
Structured Query
Language

STRUCTURED QUERY LANGUAGE

12.1 INTRODUCTION

The Structured Query Language (SQL)
is a language that enables you to create and
operate on relational databases, which are sets of
related information stored in tables.

The database world is becoming increasingly
integrated, and this has led to a clamor for a standard
language that can be used to operate in many different
kinds of computer environment. The SQL (Structured
Query Language) has proved to be a standard language as it

allows users to learn one
set of commands and use it
to create, retrieve, alter, and
transfer information regard-
less of whether they are
working on a PC, a workstation, a
mini, or a mainframe.

There are numerous versions of SQL. The original version was

developed at IBM’s San Jose Research Laboratory (now the Almanden Research

Center). This language, originally called Sequel, was implemented as part of the

System R project in early 1970s. The Sequel language has evolved since then, and

its name has changed to SQL. In 1986, the American National Standards Institute

(ANSI) published an SQL standard that was updated again in 1992 ; latest ISO

standard of SQL was released in 2008 and named as SQL:2008.

SQL has clearly established itself as the standard
relational database language. In this chapter, we present a
briefed survey of SQL.

12.2 PROCESSING CAPABILITIES OF SQL

The SQL has proved to be a language that can be used by both casual users as well as skilled

programmers. It offers a variety of processing capabilities, simpler ones of which may be used by the

former and the more complex by the latter class of users.

(12.1)

SQL – Structured Query Language

SQL is a simple query language

used for accessing, handling and

managing data in relational

databases.

NOTE

Latest SQL standard as of now is

SQL:2008, released in 2008.

In This Chapter

12.1 Introduction

12.2 Processing Capabilities of SQL

12.3 Data Definition Language

12.4 Data Manipulation Language

12.5 SQL Processing

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

The various processing capabilities of SQL are :

1. Data Definition Language (DDL). The SQL DDL provides commands for
defining relation schemas, deleting relations, creating indexes, and modifying
relation schemas.

2. Interactive Data Manipulation Language (DML). The SQL DML includes a query
language based on both the relational algebra and the tuple relational calculus.
It also includes commands to insert, delete, and modify tuples in the database.

3. Embedded Data Manipulation Language. The embedded form of SQL is
designed for use within general-purpose programming languages such as PL/1,
Cobol, Fortran, Pascal, and C.

4. View Definition. The SQL DDL also includes commands for defining views.

5. Authorization. The SQL DDL includes commands for specifying access rights to
relations and views.

6. Integrity. The SQL provides (limited) forms of integrity checking. Future
products and standards of SQL are likely to include enhanced features for
integrity checking.

7. Transaction control. SQL includes commands for specifying the beginning and
ending of transactions1 along with commands to have a control over transaction
processing.

12.3 DATA DEFINITION LANGUAGE

A database scheme is specified by a set of definitions which are
expressed by a special language called a data definition language
(DDL). The result of compilation of DDL statements is a set of
tables which are stored in a special file called data dictionary (or
directory).

Whenever data is read or modified in the database system, the
data directory is consulted.

The DDL (Data Definition Language) provides a set of
definitions to specify the storage structure and access methods
used by the database system.

An ideal DDL should perform the following functions :

1. It should identify the types of data division such as data item, segment, record,
and data-base file.

2. It should give a unique name to each data-item-type, record-type, file-type,
database, and other data subdivision.

3. It should specify the proper data types.

4. It should specify how the record types are related to make structures.

5. It may define the type of encoding the program uses in the data items (binary,
character, bit, string, etc.). This should not be confused with the encoding
employed in physical representation.

6. It may define the length of the data items.

12.2 Support Material

Data Dictionary A Data Dictionary is

a file that contains “metadata’’ i.e.,

“data about data’’.

DDL – Data Definition Language

The DDL provides a set of defini-
tions to specify the storage structure
and access methods used by the
database system.

1. A transaction is a complete logical unit of work. For example, if we say that a file is to be updated , then this transaction will include

opening of file, reading of file, making the changes in it and then finally storing it back . Thus this complete unit includes four small steps

that make it a transaction.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

7. It may define the range of values that a data-item can assume.

8. It may specify means of checking for errors in the data.

9. It may specify privacy locks for preventing unauthorized reading or
modification of the data.

10. A logical data definition should not specify addressing, indexing, or
searching techniques or specify the placement of data on the storage units,
because these topics are in the domain of physical, not logical, organization.

The SQL commands covered later in this chapter, include DDL commands also.

12.4 DATA MANIPULATION LANGUAGE

After the database scheme has been specified and the database has been created, the

data can be manipulated using a set of procedures which are expressed by a special

language called a data manipulation language (DML). By data manipulation,

we mean :

m the retrieval of information stored in the database.

m the insertion of new information into the database.

m the deletion of information from the database.

m the modification of data stored in the database.

The DMLs are basically of two types :

(i) Procedural DMLs require a user to specify what data is needed and how to get it.

(ii) Non-procedural DMLs require a user to specify what data is needed without
specifying how to get it.

12.5 SQL PROCESSING

SQL is a language oriented specifically around relational databases. The SQL
commands can operate on entire groups of tables as single objects and can treat any
quantity of information extracted or derived from them as a single unit as well.

SQL actually consists of three sub-languages :

1. DDL – Data Definition Language. Covered under section 12.3.

2. DML – Data Manipulation Language. Covered under section 12.4.

3. DCL – Data Control Language. It is used to control access to the data base (by
GRANTing / REVOKing etc.) and therefore essential to the system. We shall
not cover DCL here as it is beyond the scope of syllabus.

12.5.1 Concept of Data Types

Since relational-database systems are based on the relationships between pieces of

information, the various types of data must be clearly distinguished from one another, so

that the appropriate processes and comparisons can be applied. In SQL, this is done by

assigning each field a data type that indicates the kind of value the field will contain. All the

values in a given field must be of same data type.

The ANSI SQL standard recognizes only text and number

types, whereas many commercial programs use other special

types as well, for instance, DATE and TIME types. The

exact ANSI data types are being listed below in Table 12.1.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.3

Data Manipulation Language

A Data Manipulation

Language (DML) is a language

that enables users to access or

manipulate data as organized by

the appropriate data model.

? 1. What is SQL ? What are various

subdivisions of SQL ?

2. Give examples of some DDL commands

and some DML commands.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

In addition to ANSI data types, most implementations of SQL support DATE and

TIME types.

Some major date formats you may encounter are :

Standard Format Example

International Standards Organization (ISO) yyyy-mm-dd 2012-02-24

Japanese Industrial Standard (JIS) yyyy-mm-dd 2012-02-24

IBM European Standard (EUR) dd.mm.yyyy 24.02.2012

IBM USA Standard (USA) mm/dd/yyyy 02/24/2012

Some major time formats used across SQL implementations are :

Standard Format Example

International Standard Organization (ISO) hh-mm-ss 23-13-41

Japanese Industrial Standard (JIS) hh-mm-ss 23-13-41

IBM European Standard (EUR) hh.mm.ss 23.13.41

IBM USA Standard (USA) hh.mm AM/PM 11.13 PM

Even DATE and TIME can be added, subtracted or compared as it can be done with
other data types.

12.4 Support Material

Table 12.1 ANSI SQL Data Types

Class Data Type Description

Text CHAR
(or CHARACTER)

Values of this type must be enclosed in single quotes such as ‘text‘,
‘example‘ etc. Two adjacent single quotes (‘ ‘) inside the string will
represent one single quote. For instance, Ram’s will be written as
‘Ram’’s’

Exact Numeric DEC
(or DECIMAL)

It can represent a fractional number such as 17.321, 214.003 etc. Here
the size argument has two parts : precision and scale. The precision
indicates how many significant digits the number is to have. The scale
indicates the maximum number of digits to the right of the decimal
point. The size given as (5, 2) indicates precision as 5 and scale as 2.
Here the scale cannot exceed the precision.

-do- NUMERIC It is same as DECIMAL except that the maximum number of digits
may not exceed the precision argument.

-do- INT (or INTEGER) It represents a number without a decimal point. Here the size
argument is not used ; it is automatically set to an implementation
dependent value.

-do- SMALLINT Same as INTEGER except that, depending upon the implementation,
the default size may (or may not) be smaller than INTEGER.

Approximate
Numeric

FLOAT It represents a floating point number in base 10 exponential notation.
The size argument consists of a single number specifying the
minimum precision.

-do- REAL It is same as FLOAT, except that no size argument is used. The
precision is set to an implementation dependent default value.

-do- DOUBLE PRECISION
(or DOUBLE)

Same as REAL, except that the implementation-defined precision for
DOUBLE PRECISION must exceed the implementation-defined
precision of REAL

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

12.5.2 Various SQL Commands and Functions

The SQL provides a predefined set of commands that help us work on relational

databases. This section deals with various SQL commands. But before discussing them, we

must be familiar with the conventions and terminology used in SQL commands.

Keywords are words that have a special meaning in SQL. They are understood to be

instructions. Here, the SQL keywords have been printed in capital letters. Commands, or

statements, are instructions given by you to a SQL database. Commands consist of one or

more logically distinct parts called clauses. Clauses begin with a keyword for which they

are generally named, and consist of keywords and arguments. Examples of clauses are

“FROM sales’‘ and “WHERE value � 1500.00’‘, Arguments complete or modify the meaning

of a clause. In the above examples, ‘sales‘ is the argument, and FROM is the keyword of

FROM clause. Likewise ‘value �1500.00‘ is the argument of the WHERE clause. Objects are

structures in the database that are given names and stored in memory. They include base

tables, views, and indexes2.

Now that we are about to start SQL commands, following table (Table 12.2)

summarises the symbols used in syntax statements.

Symbol Meaning

� This is a symbolic way of saying “or’’. That is, whatever precedes this symbol may
optionally be replaced by whatever follows it.

{ } Everything enclosed in it, is treated as a unit for the purposes of evaluating �, . , . . or other
symbols.

[] This means, everything enclosed in it is optional.

... This means whatever precedes it may be repeated any number of times.

.,.. Whatever precedes this, may be repeated any number of times with the individual
occurrences separated by commas.

� � SQL and other special terms are in angle brackets.

12.5.2A CREATE TABLE Command

Tables are defined with the CREATE TABLE command. When a table is created, its
columns are named, data types and sizes are supplied for each column. Each table must
have at least one column. The syntax of CREATE TABLE command is :

CREATE TABLE <table-name>

(<column name> <data type> [(�size�)],

<column name> <data type> [(�size�) ...]) ;

To create an employee table whose scheme is as follows :

employee (ecode, ename, sex, grade, gross)

the SQL command will be

CREATE TABLE employee

(ecode integer,

ename char(20),

sex char(1),

grade char(2),

gross decimal) ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.5

Table 12.2

Symbols Used

in Syntax of

Statements

2. An index is an ordered list of single or grouped column values that stores the disk locations of the rows containing those values.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

When you create a table, you can place constraints on the values that can
be entered into its fields. If this is specified, SQL will reject any values that
violate the criteria you define.

The two basic types of constraints are column constraints and table constraints. The
difference between the two is that column constraints apply only to individual columns,
whereas table constraints apply to groups of one or more columns. The following is the
syntax for the CREATE TABLE command, expanded to include constraints :

CREATE TABLE �table name�

(� column name��data type�[(�size�)] � column constraint�,

� column name��data type�[(�size�)] � column constraint�...

� table constraint�(�column name�,[, � column name�...]) ...) ;

The fields given in parenthesis after the table constraint(s) are the fields to which they
apply. The column constraints apply to the columns whose definitions they follow.

For example, if you write the keywords NOT NULL immediately after the data type
(and size) of a column, this means the column can never have empty values (i.e., NULL3

values). Otherwise SQL will assume that NULLs are permitted. Consider the following
SQL command :

CREATE TABLE employee

(ecode integer NOT NULL ,

ename char (20) NOT NULL ,

sex char (1) NOT NULL ,

grade char (2),

gross decimal) ;

The above command creates a table called employee in which ecode column (integer
type) can never be employed as its definition is followed by keywords NOT NULL.
Similarly, the columns ename (char (20)) and sex (char (1)) can never have NULL values.
Any attempt to put NULL values in these columns will be rejected.

Different Constraints

These constraints ensure database integrity, thus are sometimes called database integrity
constraints. A few of them are :

m Unique constraint m Primary key constraint

m Default constraint m Check constraint

1. Unique Constraint

This constraint ensures that no two rows have the same value in the specified
column(s). For example, UNIQUE constraint applied on ecode of employee table ensures that
no rows have the same ecode value, as shown below :

CREATE TABLE employee
(ecode integer NOT NULL UNIQUE ,

ename char (20) NOT NULL,
sex char (1) NUT NULL,
grade char (2),
gross decimal) ;

12.6 Support Material

Constraint A Constraint is a

condition or check applicable

on a field or set of fields.

See, NOT NULL constraint has been

applied individually on columns

ecode, ename and sex

See, multiple constraints (NOT NULL and UNIQUE

constraints here) have been applied on one column

by putting space in between. The comma (,) comes

in the end of column definition.

3. NULL is a special keyword in SQL that depicts an empty value. A column having NULL is not empty but stores an empty value. Two

NULLs cannot be added, subtracted or compared.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

This constraint can be applied only to columns that have also been declared NOT
NULL, however, this condition is implementation dependent.

2. Primary Key Constraint

This constraint declares a column as the primary key of the table. This constraint is

similar to unique constraint except that only one column (or one group of columns) can be

applied in this constraint. The primary keys cannot allow NULL values, thus, this

constraint must be applied to columns declared as NOT NULL. Consider the following

SQL statement :

CREATE TABLE employee

(ecode integer NOT NULL PRIMARY KEY ,

ename char (20) NOT NULL,

sex char (1) NUT NULL,

grade char (2),

gross decimal) ;

3. Default Constraint

A default value can be specified for a column using the DEFAULT clause. When a

user does not enter a value for the column (having default value), automatically the

defined default value is inserted in the field.

Consider the following SQL statement :

CREATE TABLE employee

(ecode integer NOT NULL PRIMARY KEY,

ename char (20) NOT NULL,

sex char (1) NOT NULL,

grade char (2) DEFAULT � ‘E1’ ,

gross decimal) ;

According to above command, if no value is provided for grade, the default value of

‘E1’, will be entered. The datatype of the default value has to be compatible with the

datatype of the column to which it is assigned. Insertion of NULL (as default value) is

possible only if the column definition permits. (NOT NULL columns cannot have NULL as

default). A column can have only one default value.

4. Check Constraint

This constraint limits values that can be inserted into a column of a table. For instance,

consider the following SQL statement :

CREATE TABLE employee

(ecode integer NOT NULL PRIMARY KEY,

ename char (20) NOT NULL,

sex char (1) NUT NULL,

grade char (2) DEFAULT � ‘E1’,

gross decimal CHECK (gross �2000)) ;

This statement ensures that the value inserted for gross must be greater than 2000.

When a check constraint involves more than one column from the same table, it is

specified after all the columns have been defined.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.7

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

For instance,

CREATE TABLE items

(icode char (5) NOT NULL PRIMARY KEY,

descp char (20) NOT NULL,

ROL integer,

QOH integer,

CHECK (ROL � QOH)

) ;

This statement compares two columns ROL and QOH, thus, these two columns must
be defined before this CHECK constraint.

Check constraint can consist of :

m A list of constant expressions specified using IN

For example,

descp char (20) CHECK

(descp IN (‘NUT’, ‘BOLT’, ‘SCREW’, ‘WRENCH’, ‘NAIL’))

m Range of constant expressions specified using BETWEEN. The
upper and lower boundary values are included in the range.

For example,

price decimal CHECK

(price BETWEEN 253.00 and 770.00)

m A pattern specified using LIKE

For example,

ordate char (10) NOT NULL CHECK (ordate LIKE ‘- -/- -/- - - -’)

m Multiple conditions using OR, AND etc. For example,

CHECK ((discount � 0.15 AND city � ‘HISSAR’) OR

(discount � 0.13 AND city � ‘JAIPUR’) OR

(discount � 0.17 AND city � ‘MOHALI’))

Applying Table Constraints

When a constraint is to be applied on a group of columns
of the table, it is called table constraint. The table
constraints appear in the end of table definition. For
instance, if you want combination of icode and descp of
table items to be unique, you may write it as follows :

CREATE TABLE items

(icode char (5) NOT NULL,

descp char (20) NOT NULL,

ROL integer,

QOH integer,

CHECK (ROL � QOH),

UNIQUE (icode, descp)

) ;

The above statement ensures that the combination of icode
and desc in each row must be unique.

12.8 Support Material

See, this constraint was referring to

more than one columns, hence it

has been defined in the end of

table definition, after all the column

definitions

These two are table

constraints

? 1. What is the difference between column

constraints and table constraints ?

Name some database integrity

constraints.

2. How do the following constraints work ?

(i) Unique (ii) Primary Key

(iii) Default (iv) Check

Note : For the following question consider

tables EMPLOYEE, EMP, DEPT, PROJECT and

SALGRADE that have been mentioned in

Type B questions 5-7.

3. To create a table DEPTO30 to hold the

employee numbers, names, jobs and

salaries of employed in department

with DeptNo � 30.

NOTE

A column constraint is applicable

only to a column, whereas a

table-constraint is applicable to

multiple columns.

A column-constraint is written

along with the column definition ;

and a table-constraint is written

after all the column definitions

are over in CREATE TABLE

command.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Similarly, if you want to define primary key that contains more than one column, you

can use PRIMARY KEY table constraint. For instance, if you want to declare a primary key

for the table members as the combination of columns firstname and lastname, it can be done

as follows :

CREATE TABLE members

(firstname char (15) NOT NULL,

lastname char (15) NOT NULL,

city char (20),

PRIMARY KEY (firstname, lastname)) ; ––4 the table constraint

12.5.2B The SELECT Command

The SELECT command of SQL lets you make queries on the database. A query is a
command that is given to produce certain specified information from the database table(s).
There are various ways and combinations, a SELECT statement can be used into. It can be
used to retrieve a subset of rows or columns from one or more tables.

In its simplest form, SELECT statement is used as

SELECT �column name�[, �column name�, …]

FROM �table name�;

For example, if you want to view only the information of two columns empno and
empname of table emp, you may write your query as

SELECT Empno, Empname

FROM emp ;

If the EMP table is as shown below :

EmpNo EmpName Job Mgr Hiredate Sal Comm DeptNo

7839 KING PRESIDENT 17-NOV-81 5000 10

7698 BLAKE MANAGER 7839 01-MAY-81 2850 30

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7566 JONES MANAGER 7839 02-APR-81 2975 20

7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30

7900 JAMES CLERK 7698 03-DEC-81 950 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7902 FORD ANALYST 7566 03-DEC-81 3000 NULL

7369 SMITH CLERK 7902 17-DEC-80 800 NULL

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7934 MILLER CLERK 7782 23-JAN-82 1300 NULL

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.9

Table 12.3

Example table

namely EMP

4. A comment can be given using double minus sign i.e., – – .

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Then the result of above query will be as shown below :

Empno EmpName

7839 KING

7698 BLAKE

7782 CLARK

: :

: :

If you want to see the information of columns empno, job, and sal from the table
employee, you will write

SELECT empno, job, sal

FROM emp ;

If you want to see the entire table i.e., every column of a table, you need not give a
complete list of columns. The asterisk (*) can be substituted for a complete list of columns
as follows :

SELECT * FROM emp ;

This will display all the rows present in the emp table.

Reordering Columns in Query Results

While giving a querying, the result can be obtained in any order. For example, if
you give

SELECT job, empno, sal, FROM emp ;

the result will be having job as first column, empno as second column, and
sal as third column. You can write the column names in any order and the
output will be having information in exactly the same order.

Eliminating Redundant Data (with keyword DISTINCT)

By default, data is selected from all the rows of the table, even if the data appearing in

the result gets duplicated. The DISTINCT keyword eliminates duplicate rows from the

results of a SELECT statement. For example, if the Suppliers table stores the names and cities

of the suppliers and we want to see the cities where the Suppliers belong to. The table may

consist of more than one supplier belonging to the same city but the result of the query

should not contain duplicated city names. To do so, we shall write

SELECT DISTINCT city

FROM Suppliers ;

In the output, there would be no duplicate rows. Whenever DISTINCT is used, only
one NULL value is returned in the results, no matter how many NULL values are
encountered.

If we consider Suppliers table of chapter 11, shown in Fig. 11.3, then the above query
will produce the following output :

City

Delhi

Mumbai

Jaipur

Banglore

12.10 Support Material

The data from all the rows

appear in the result.

NOTE

The order of selection deter-

mines the order of display.

See the duplicate entry Delhi

has not reappeared. This is

the property of DISTINCT.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

DISTINCT, in effect, applies to the entire output row, not a specific field. The

DISTINCT keyword can be specified only once in a given SELECT clause. If the clause

selects multiple fields, DISTINCT eliminates rows where all of the selected fields are

identical. Rows in which some values are the same and some different will be retained.

Selecting From All the Rows � ALL keyword

If in place of DISTINCT, you give ALL then the result retains the duplicate output

rows. It is just the same as when you specify neither DISTINCT nor ALL ; ALL is

essentially a clarifier rather than a functional argument. Thus if you give

SELECT ALL city FROM suppliers ;

it will give values of city column from every row of the table without considering the duplicate
entries.

Considering the same table Suppliers, now the output will be :

City

Delhi

Mumbai

Delhi

Banglore

Jaipur

Selecting Specific Rows � WHERE clause

In real life, tables can contain unlimited rows. There is no need to view all the rows
when only certain rows are needed. SQL enables you to define criteria to determine which
rows are selected for output. The WHERE clause in SELECT statement specifies the criteria
for selection of rows to be returned. The SELECT statement with WHERE clause takes the
following general form :

SELECT �column name�[, �column name� , …]

FROM �table name�

WHERE �condition�;

when a WHERE clause is present, the database program goes through the entire table one
row at a time and examines each row to determine if the given condition is true. If it is true
for a row, that row is displayed in the output. For example, to display the empname and sal
for employees having their salary more than 2900, the command would be

SELECT empname, sal

FROM emp

WHERE sal �2900 ;

The above query will produce the following output :

Empname Sal

KING 5000

JONES 2975

FORD 3000

SCOTT 3000

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.11

Only the records

having sal > 2900

have appeared

in the output.

This clause will extract only those rows where sal is

having value more than 2900

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Relational Operators

To compare two values, a relational operator is used. The result of the comparison is
true or false. The SQL recognizes following relational operators :

�, �, �, � �, � �, � � (not equal to)

In CHARACTER data type comparisons, � means earlier is the alphabet and � means

later in the alphabet. For example e f� and g f� . Apostrophes are necessary around all

CHAR, DATE and TIME data. For example, to list all the members not from ‘DELHI’

SELECT * FROM Suppliers

WHERE city � � ‘DELHI’ ;

Logical Operators

The logical operators OR, AND and NOT are used to connect search conditions in the
WHERE clause. For example,

1. To list the employees’ details having grades ‘E2’ or ‘E3’ from table employee
(not the EMP table) :

SELECT ecode, ename, grade, gross

FROM employee

WHERE (grade � ‘E2’ OR grade � ‘E3’) ;

2. To list all the employees’ details having grades as ‘E4’ but with gross � 9000

SELECT ecode, ename, grade, gross

FROM employee

WHERE (grade � ‘E4’ AND gross � 9000) ;

3. To list all the employees’ details whose grades are other than ‘G1’

SELECT ecode, ename, grade, gross

FROM employee

WHERE (NOT grade � ‘G1’) ;

when all the logical operators are used together, the order of precedence is NOT, AND,
and OR. However, parentheses can be used to override the default precedence.

Condition Based on a Range

The BETWEEN operator defines a range of values that the column values must fall in to
make the condition true. The range includes both lower value and the upper value. For
example, to list the items whose QOH falls between 30 to 50 (both inclusive), the command
would be :

SELECT icode, descp, QOH

FROM items

WHERE QOH BETWEEN 30 AND 50 ;

If the Items Table is as shown below :

Icode Descp Price QOH ROL ROQ

I01 Milk 15.00 20 10 20

I02 Cake 5.00 60 20 50

I03 Bread 9.00 40 10 40

I04 Biscuit 10.00 50 40 60

I05 Namkeen 15.00 100 50 70

I06 Cream Roll 7.00 10 20 30

12.12 Support Material

Table 12.4

Example table

Items

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Then the above query will produce the following output :

Icode Descp QOH

I03 Bread 40

I04 Biscuit 50

The operator NOT BETWEEN is reverse of BETWEEN operator, that is, the rows not
satisfying the BETWEEN condition are retrieved.

For example,

SELECT icode, descp

FROM items

WHERE ROL NOT BETWEEN 100 AND 1000 ;

The above query will list the items whose ROL is below 100 or above 1000.

Condition Based on a List

To specify a list of values, IN operator is used. The IN operator selects values that
match any value in a given list of values.

For example, to display a list of members from ‘DELHI’, ‘MUMBAI’, ‘CHENNAI’ or
‘BANGALORE’ cities, you may give

SELECT * FROM members

WHERE city IN (‘DELHI’, ‘MUMBAI’, ‘CHENNAI’, ‘BANGALORE’) ;

The NOT IN operator finds rows that do not match in the list. So if you write

SELECT * FROM members

WHERE city NOT IN (‘DELHI’, ‘MUMBAI’, ‘CHENNAI’) ;

It will list members not from the cities mentioned in the list.

Condition Based on Pattern Matches

SQL also includes a string-matching operator, LIKE, for comparisons on character

strings using patterns. Patterns are described using two special wildcard characters :

m percent (%). The % character matches any substring.

m underscore (_). The _ character matches any one character.

Patterns are case-sensitive, that is, upper-case characters do not match lower-case

characters, or vice-versa.

To illustrate pattern matching, consider the following examples :

m “San%’’ matches any string beginning with “San’’

m “%idge%’’ matches any string containing “idge’’ as a substring, for example,
“Ridge’’, “Bridges’’, “Cartridge’’, “Ridgeway’’ etc.

m “- - - -’’ matches any string of exactly 4 characters.

m “- - - -%’’ matches any string of at least 4 characters.

(Notice that all patterns are enclosed in double quotes.)

The LIKE keyword is used to select rows containing columns that match a wildcard
pattern.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.13

Only the items having QOH

between 30 to 50 have

been listed.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Examples :

1. To list members which are in areas with pin codes starting with 13, the
command is :

SELECT firstname, lastname, city

FROM members

WHERE pin LIKE “13%’’ ;

2. To list employees who have four letter first names ending with “D’’, the command
would be :

SELECT empno, empname

FROM emp

WHERE empname LIKE “_ _ _D’’ ;

Consider the Table 12.3, the above query will produce the following output :

EmpCode EmpName

7521 WARD

7902 FORD

3. To list members which are not in areas with pin codes starting with 13, the
command is :

SELECT firstname, lastname, city

FROM members

WHERE pin NOT LIKE “13%’’ ;

The keyword NOT LIKE is used to select rows that do not match the specified pattern
of characters.

In order for patterns to include the special pattern characters (that is, %, _), SQL

allows the specific of an escape character. The escape character is used immediately before

a special pattern character to indicate that the special pattern character is to be treated as a

normal character. We define the escape character for a LIKE comparison using the

ESCAPE keyword. To illustrate, consider the following patterns which use a backslash (\)

as the escape character.

m LIKE “wx\%yz%” ESCAPE “\” matches all strings beginning with “wx%yz”.

m LIKE “wx\\yz%” ESCAPE “\” matches all string beginning with “wx\yz”.

The ESCAPE clause can define any character as an escape character. The above two

examples use backslash (‘\’) as the escape character.

Searching for NULL

The NULL value in a column can be searched for in a table using IS NULL in the

WHERE clause. (Relational operators like �, � � etc. can’t be used with NULL).

For example, to list details of all employees whose departments contain NULL (i.e.,

novalue), you use the command :

SELECT empno, empname, job

FROM emp

WHERE DeptNo IS NULL ;

12.14 Support Material

LIKE comparison operator for matching patterns

The IS comparison operator for NULLs

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Considering the same EMP table, the above query will result in following output :

EmpNo EmpName Job

7902 FORD ANALYST

7369 SMITH CLERK

7934 MILLER CLERK

Sorting Results � ORDER BY clause

Whenever a SELECT query is executed, the resulting rows emerge in a
predecided order. You can sort the results or a query in a specific order

using ORDER BY clause. The ORDER BY clause allows sorting of query results by one or
more columns. The sorting can be done either in ascending or descending order, the default
order is ascending. The data in the table is not sorted ; only the results that appear on the
screen are sorted. The ORDER BY clause is used as :

SELECT �column name�[, �column name� , ...]

FROM �table name�

[WHERE �predicate�]

[ORDER BY �column name�] ;

For example, to display the list of employees in the alphabetical order of their names,
you use the command :

SELECT * FROM employee

ORDER BY ename ;

To display the list of employees having salary more than 2500 in the alphabetical
order of their names, you may give the command :

SELECT empno, empname, job FROM emp

WHERE sal �2500

ORDER BY ename ;

Considering the same EMP table, the above query would produce the following
output :

Empno EmpName Job

7698 BLAKE MANAGER

7902 FORD ANALYST

7566 JONES MANAGER

7839 KING PRESIDENT

7788 SCOTT ANALYST

To display the list of employees in the descending order of employee code, you use
the command :

SELECT * FROM employee

ORDER BY ecode DESC ;

To specify the sort order, we may specify DESC for descending order or ASC for

ascending order. Furthermore, ordering can be performed on multiple attributes. Suppose

that we wish to list the entire employee relation in descending order of grade. If several

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.15

Only the employees having

NULL in their depts

have appeard

NOTE

Non-NULL values in a table can

be listed using IS NOT NULL.

The output appears in the

order of Empname.

This clause will arrange the output in

alphabetical order of ename value

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

employees have the same grade, we order them in ascending order by their names. We

express this in SQL as follows :

SELECT * FROM employee

ORDER BY grade DESC, ename ASC ;

See, the multiple fields are separated by commas. In order to fulfill an ORDER BY

request, SQL must perform a sort. Since sorting a large number of tuples may be costly, it is

desirable to sort only when necessary.

How to perform simple calculations ?

Often a simple calculation needs to be done, for example, 4 3* . The only SQL verb to

cause an output to be written to monitor is SELECT. However, a SELECT must have a table

name in its FROM clause, otherwise the SELECT fails. You can use Dual table for this

purpose. For instance, when a calculation is to be performed such as 3 4* or 8 3* etc., there

really is no table being referenced, only numeric literals are being used.

To facilitate such calculations via a SELECT, Oracle
provides a dummy table called Dual. Dual table is a small
worktable, which has just one row and one column. It can
be used for obtaining calculation results and also
system-date.

The following query :

SELECT 4 3* FROM dual ;

will produce the result as :

4 3*

———-

12

The current date can be obtained from the table Dual
in the required format, using pseudo-column sys_date, as
shown below :

SELECT sysdate FROM dual ;

The output produced by above query will show the
current date :

SYSDATE

———————

06-Dec-11

Aggregate Functions

The summary values are calculated from the data in a
particular column using SQL‘s aggregate functions.
Aggregate functions can be applied to all rows in a table
or to a subset of the table specified by a WHERE clause.

12.16 Support Material

Ordering records on multiple fields

? 1. Compare DISTINCT and ALL keywords

when used with SELECT command.

2. What is wrong with the following

statement ? Write the corrected form of

this query :

SELECT * FROM employee
WHERE grade � NULL ;

Note : For the following questions consider

tables EMPLOYEE, EMP, DEPT, PROJECT and

SALGRADE that have been mentioned in

Type B questions 5-7.

3. Display names all employee whose

names include either of the substring

“TH’’ or “LL’’.

4. Display data for all CLERKS who earn

between 1000 and 2000.

5. Display data for all employees sorted by

their department, seniority and salary.

6. Write a SQL statement to list EmpNo,

EmpName, DeptNo, for all the employees.

This information is should be sorted on

EmpName.

7. To find all those employees whose job

does not start with ‘M’.

8. To display all employees who were

hired during 1995.

9. To display DeptNo, Job, EmpName in

reverse order of Salary from the EMP

table.

10. List EmpName, Job, Sal for all the

employees who have a manager.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

These functions are called aggregate functions because they operate on aggregates of

tuples. The results of an aggregate function is a single value.

Examples :

1. To calculate the total gross for employees of grade ‘E2’, the
command is :

SELECT sum(gross)

FROM employee

WHERE grade � ‘E2’ ;

2. To display the average gross of employees with grades ‘E1’ or ‘E2’, the
command used is :

SELECT avg(gross)

FROM employee

WHERE (grade � ‘E1’ OR grade � ‘E2’) ;

3. To count the number of employees in employee table, the SQL
command is :

SELECT count(*)

FROM employee ;

4. To count the number of cities, the different members belong to, you use the

following command :

SELECT count(DISTINCT city)

FROM members ;

Here the DISTINCT keyword ensures that multiple entries of the same city are

ignored. The * is the only argument that includes NULLs when it is used only with

COUNT, functions other than COUNT disregard NULLs in any case.

If you want to count the entries including repeats, the keyword ALL is used. The

following command will COUNT the numbers of non NULL city fields in the members

table :

SELECT count (ALL city)

FROM members ;

In general, GROUP functions

m Return a single value for a set of rows

m Can be applied to any numeric values, and some CHAR and DATE values.

Grouping Result � GROUP BY

The GROUP BY clause is used in SELECT statements to divide the table into groups.

Grouping can be done by a column name, or with aggregate functions in which case the

aggregate produces a value for each group. For example, to calculate the number of

employees in each grade and average gross for each grade of employees, you use the

command

SELECT job, count(*), sum(comm)

FROM emp

GROUP BY job ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.17

SQL includes following functions :

avg to compute average

value

min to find minimum value

max to find maximum value

sum to find total value

stddev to find the standard

deviation

count to count non-null values

in a column

count() to count total number of

rows in a table.

variance to compute the variance

of values in column

Grouping of records job wise.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

GROUP BY applies the aggregate functions independently to a series of groups
that are defined by having a field value in common. The output of this query may look
like :

Job Count(*) Sum(comm)

PRESIDENT 1 0

MANAGER 3 0

SALESMAN 4 2200

CLERK 4 0

ANALYST 2 0

See each row gives the details of total no. of employee in one job and total gross for each

job.

Placing Conditions on Groups � HAVING Clause

The HAVING clause places conditions on groups in contrast to WHERE clause that

places conditions on individual rows. While WHERE conditions cannot include aggregate

functions, HAVING conditions can do so.

For example, to calculate the average gross and total gross for employees belonging to
‘E4’ grade, the command would be :

SELECT avg(gross), sum(gross)

FROM employee

GROUP BY grade

HAVING grade � ‘E4’ ;

To display the jobs where the number of employee are less than 3, you use the
command :

SELECT job, count(*)

FROM emp

GROUP BY job

HAVING count(*) � 3 ;

This will produce the following output :

Job Count(*)

PRESIDENT 1

ANALYST 2

Scalar Expressions with Selected Fields

If you want to perform simple numeric computations on the data to put it in a form

more appropriate to your needs, SQL allows you to place scalar expressions and constants

among the selected fields. For example, you might consider it desirable to present your

salespeople’s commissions as percentage rather than decimal numbers. You may do it as :

SELECT salesman_name, comm*100

FROM salesman ;

12.18 Support Material

The condition in HAVING clause is applied on groups of

records, not on individual records. Only the condition in

WHERE clause is applied on individual records

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Putting Text in the Query Output

The previous example can be refined by marking the commissions as percentages
with the percent sign (%). This enables you to put such items as symbols and comments in
the output, as in the following example :

SELECT salesman_name, comm*100, ‘%’

FROM salesman ;

A sample output produced by above query is shown below :

Salesman_name

Ajay 13.00 %

Amit 11.00 %

Shally 07.00 %

Isha 15.00 %

See, the same comment or symbol gets printed with every row of the output, not
simply once for the table. You could insert text in your query also, making it more
presentable. For example,

SELECT salesman_name, ‘gets the commission’, comm*100, ‘%’

FROM salesman ;

The sample output produced by above query is shown below :

Salesman_name

Ajay gets the commission 13.00 %
Amit gets the commission 11.00 %
Shally gets the commission 07.00 %
Isha gets the commission 15.00 %

After covering all the clauses, let us now summarise the
usage of SELECT.

SELECT column list

FROM �table name�

WHERE �predicate�

GROUP BY �column name(s)�

HAVING �search condition�

ORDER BY column-name ;

The order of the clauses in the SELECT statement is
important.

12.5.2C Creating Table From Existing Table

You can define a table and put data into it without going
through the usual data definition process. This can be
done by using SELECT statement with CREATE TABLE.

The new table stores the result produced by the SELECT
statement. The name of the new table must be unique.
Following query illustrates this :

CREATE TABLE orditem AS

(SELECT icode, descp

FROM items

WHERE QOH � ROL) ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.19

? 1. What is the difference between WHERE

and HAVING clause ?

2. What is the difference between the

working of following functions ?

count (*), count (�column-name�),

count(DISTINCT), count(ALL)

Note : For the following questions consider

tables EMPLOYEE, EMP, DEPT, PROJECT

and SALGRADE that have been mentioned

in Type B questions 5-7.

3. Write SQL statement for :

Find all the employees who have no

manager.

4. Show the average salary for all depart-

ments with more than 3 people for a job.

5. Display only the jobs with maximum

salary greater than or equal to 3000.

6. Find out number of employees having

“Manager’’ as Job.

7. Find the average salary and average

total remuneration for each job type

remember salesman earn commission.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

This will create a new table called orditem that stores two columns : itemcode and
description for the items that have their QOH less than ROL in the relation items.

The newly created table orditem will look as it is shown below :

Table 12.5 Orditem

Icode Descp Price QOH ROL QOH

I06 Cream Roll 7.00 10 20 30

The table orditem has derived its contents from table items (Table 12.4).

If you do not specify the WHERE clause, icode & descp from all rows of the items

relation will be copied into orditem.

The CREATE TABLE <table> AS SELECT... is useful for creating test tables, new

tables as copies of existing tables, and for making smaller tables out of large tables.

In some implementations, a new table, from an existing table can also be
created using SELECT INTO as shown below :

SELECT icode, descp INTO orditems

FROM Items
WHERE QOH < ROL ;

It produces the same result as by previous query.

12.5.2D The INSERT Command

Values are placed in and removed from attributes of a relation with three DML
commands : INSERT, DELETE and UPDATE. These are all referred to in SQL as update
commands in a generic sense. In our text, lowercase “update’’ will indicate these
commands generically and the uppercase for the keyword UPDATE.

The rows (tuples) are added to relations using INSERT command of SQL. In its
simplest form, INSERT takes the following syntax :

INSERT INTO �tablename�[�column list�]

VALUES (�value�, �value�...) ;

For example, to enter a row into employee table (defined earlier), you could use the
following statement :

INSERT INTO employee

VALUES (1001, ‘Ravi’, ‘M’, ‘E4’, 4670.00) ;

See the order of values matches the order of columns in the CREATE TABLE
command of employee. The same can be done with an alternate command as shown below :

INSERT INTO employee (ecode, ename, sex, grade, gross)

VALUES (1001, ‘Ravi’, ‘M’, ‘E4’, 4670.00) ;

The INSERT statement adds a new row to employee giving a value for every column in
the row. Note that the data values are in the same order as the column names in the table.
Data can be added only to some columns in a row by specifying the columns and their
data.

For instance, if you want to insert only ecode, ename and sex columns, you use the
command :

INSERT INTO employee (ecode, ename, sex)

VALUES (2014, ‘Manju’, ‘F’) ;

12.20 Support Material

NOTE

Desired information may also be

extracted from multiple tables.

In that case, you need to join the

tables. The joins in SQL have

been given in appendix C.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

The columns that are not listed in the INSERT command will have their default value,
if it is defined for them, otherwise, NULL value.

If any other column (that does not have a default and is defined NOT
NULL), an error message is generated and the row is not added.

Inserting the Results of a Query

INSERT command can also be used to take or derive values from one table
and place them in another by using it with a query. To do this, simply
replace the VALUES clause with an appropriate query as shown in the
following example :

INSERT INTO branch1

SELECT * FROM branch 2

WHERE gross �7000.00 ;

It will extract all those rows from branch2 that have gross more than 7000.00 and insert

this produced result into the table branch1.

To insert using a query, the following conditions must be true :

(i) Both the tables must be already created.

(ii) The columns of the tables being inserted into, must match the columns output
by the subquery.

12.5.2E The DELETE Command

The DELETE command removes rows from a table. This removes the entire rows, not

individual field values, so no field argument is needed or accepted. The DELETE

statement takes the following general form :

DELETE FROM �tablename�

[WHERE �predicate�] ;

To remove all the contents of items table, you use the command :

DELETE FROM items ;

The table would now be empty and could be destroyed with a DROP
TABLE command (covered in section 12.5.4B).

Even some specific rows from a table can also be deleted. To determine which rows

are deleted, you use a condition, just as you do for queries. For instance, to remove the

tuples from employee that have gross less than 2200.00, the following command is used :

DELETE FROM employee

WHERE gross � 2200.00 ;

12.5.2F The UPDATE Command

Sometimes you need to change some or all of the values in an existing row. This can

be done using the UPDATE command of SQL. The UPDATE command specifies the rows

to be changed using the WHERE clause, and the new data using the SET keyword. The

new data can be a specified constant, an expression or data from other tables.

For example, to change the reorder level ROL of all items to 250, you would write

UPDATE items

SET ROL � 250 ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.21

NOTE

In an INSERT statement, only

those columns can be omitted

that have either default value

defined or they allow NULL

values.

NOTE

SELECT, INSERT, DELETE and

UPDATE are DML commands.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

If you want to change ROL to 400 only for those items that have ROL as 300, you use the
command

UPDATE items

SET ROL � 400

WHERE ROL � 300 ;

Updating Multiple Columns

To update multiple columns, multiple column assignments can be specified with SET

clause, separated by commas. All of the said assignments will still be made to the table, a

single row at a time. To update the ROL and QOH for items having icode less than ‘I040’,

we shall write

UPDATE items

SET ROL � 400, QOH � 700

WHERE icode � ‘I040’ ;

Using Expressions in Update

Scalar expressions can also be used in the SET clause of the UPDATE command.
Suppose, if you want to increase the gross pay of all the employees by Rs. 900/-, you could
use the following expression :

UPDATE employee

SET gross � gross � 900 ;

To double the gross pay of employees of grade ‘E3’ and ‘E4’, you use the command :

UPDATE employee

SET gross � gross * 2

WHERE (grade � ‘E3’ OR grade � ‘E4’) ;

Updating to NULL Values

The NULL values can also be entered just as other values. For example, a new grade is
to be introduced and all the employees with grade ‘E4’ have to be promoted to it. But for
the time being this grade is not known, thus NULL values are to be inserted for grades ‘E4’.
This can be done as follows :

UPDATE employees

SET grade � NULL

WHERE grade � ‘E4’ ;

12.5.2G The CREATE VIEW Command

As you know about views that a view is a virtual table
with no data, but can be operated like any other table. It is
like a window through which you can view the data of
another table, which is called the base table.

The SQL provides a statement for creating views which is
CREATE VIEW command. This command consists of the
words CREATE VIEW, the name of the view to be created,
the word AS, and then a query, as in the following example :

CREATE VIEW taxpayee

AS SELECT *

FROM employee

WHERE gross �8000 ;

12.22 Support Material

? Note : For the following questions

consider tables EMPLOYEE, EMP, DEPT,

PROJECT and SALGRADE that have been

mentioned in Type B questions 5-7.

1. Insert a record with suitable data in the

table EMP, tabing system date as the

Hiredate.

2. Update table Empl by setting Dept as

Null for all employees with Department

no as 400.

3. Delete all the employees that earn less

than Rs. 5000.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

This view will be having details of those employees that have gross more than Rs.
8000/. Now this view can be used just like any other table. It can be queried, updated (if
allowed), inserted into (if allowed), deleted from (if allowed) etc. This view can be queried
as follows :

SELECT * FROM taxpayee ;

If any column in the view is to be given a different name other than the name of the
column from which it is derived, it is done by specifying the new column names as shown
below :

CREATE VIEW taxpayee (empcode, empname, sex, empgrade, empgross)

AS SELECT * FROM employee

WHERE gross �8000 ;

A view can contain columns having calculated values, but you must
specify the name for that column. For example, the following command

CREATE VIEW taxpayee (ecode, ename, tax)

AS SELECT ecode, ename, gross * 0.1

FROM employee

WHERE gross �8000 ;

The above created view has an additional column called tax which is 10% of
the gross.

Whether you can use update commands (INSERT, DELETE, and UPDATE) on views,

depends upon the fact whether the view is updatable or not. A view is updatable if it has

been defined from a single relation and the update query can

be mapped on to the base table successfully. For instance, if

you create a view as follows :

CREATE VIEW sample

AS SELECT ename, gross

FROM employee ;

You cannot use the following command

INSERT INTO sample

VALUES (‘Rohan’, 4900.00) ;

The above statement cannot be mapped onto the base table

employee, as the value of the primary key ecode is missing and

also the sex column does not have any default value and it

cannot have NULL at the same time. Thus, no such row can

be inserted that has primary key value missing. Therefore,

the view sample is not updatable.

12.5.3 Some Built-In Functions

Most SQL implementations provide several types of built-in functions5 that return
different kinds of information from the database. We are considering here a few of them.

1. Lower (Character-expression) converts the given character-expression in to lower
case.

2. Upper (Character-expression) converts the given character-expression into upper
case.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.23

NOTE

The SELECT statement used

in a view definition cannot

include :

� ORDER BY clause

� INTO clause

In nutshell, we can say,

(i) A view is like a window through which you

can view or change information in a table.

(ii) A view is a virtual table i.e.,

� it looks like a table, but it does not exist

as such

� its data are derived from base table(s).

� it only stores its definition ; it does not

contain any copy of the data.

(iii) A view provides

� Simplicity � you can see exactly what

you need

� Security � it prevents unauthorised users

from seeing unrelevant information.

5. These functions may vary from one implementation to another.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

3. Replicate (char-expn, no-of-times) repeats the given char-expn (character
expression) the specified no-of-times. The no-of-times has to be an integer.

4. Substr (expn, startpos, no-of-chars) returns the given no-of-chars (integer)
from a character string expn starting at the specified startpos (integer).

5. getdate() returns the current system date.

See the following examples for better understanding of these functions.

The query will return

SELECT lower (“HELLOW’’) FROM Dual ; hellow

SELECT upper (“friends’’) FROM Dual ; FRIENDS

SELECT replicate (“*#’’, 4) FROM Dual ; *#*#*#*#

SELECT substr (“Pointer’’, 3, 2) FROM Dual ; in

The query

SELECT getdate () FROM Dual ;

will return the current system date of your computer.

12.5.4 Joins

A join is a query that combines rows from two or more tables6. In a join-query, more
than one table are listed in FROM clause. The function of combining data from
multiple tables is called joining.

SQL can produce data from several related tables by performing either a physical
or virtual join of the tables.

The WHERE clause is most often used to perform the JOIN function where two or
more tables have common columns. Consider the following example :

SELECT patient_no, description, normal_charge, charge

FROM billed, item

WHERE billed.item_code = item.item_code ;

The above query is joining two tables billed and item (see their structures on the left) by
equating their item_codes. The select_list consists of fields coming from both the
tables. When two or more tables have a column with the same name, the name can be
qualified by using the table name combined with the period (.) in referring to the
column, e.g., billed.patient_no. Note that columns with unique names do not have to
be qualified by the table name.

12.5.4A Cartesian Product

Consider the following query :

SELECT *
FROM EMP, DEPT ;

This query will give you the Cartesian product i.e., all possible concate-
nations are formed of all rows of both the tables EMP and DEPT. That is,
when no particular rows (using WHERE clause) and columns (through
SELECT list) are selected. Such an operation is also known as Unrestricted
Join. It returns n1 n2� rows where n1 is number of rows in first table and
n2 is number of rows in second table.

12.24 Support Material

tables being joined

join condition

Cartesian Product

In unrestricted join or

Cartesian product of two

tables, all possible concate-

nations are formed of all rows

of both the tables.

A. Billed

Bill_No

Patient_No

Item_Code

Charge

B. Item

Item_Code

Description

Normal_Charge

Table Structures

6. A join can combine views also. A view is a stored query that appears like a table and can be used like a table.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

12.5.4B Table Aliases

A Table Alias is a temporary label given along with table name in FROM clause.

To cut down on the amount of typing required in your queries you can use aliases for

table names in the SELECT and WHERE clauses. Consider the following join query.

Consider the example 12.1.

Example 12.1. List the patients who had either Dr. N. Pandya, Dr. A. Sapra, Dr. Suleman
Rashid, Dr. Keith John as physician. [Dr. N. Pandya has physician id as 8883, Dr. Sapra
as 8887, Dr. Rashid as 8886 and Dr. John as 8882]. (see table structures on the left)

Solution. SELECT DISTINCT patient_no, phy_id

FROM treats

WHERE phy_id IN (8887, 8886, 8883, 8882) ;

The above example 12.1 where the query listed the PATIENT_NO and

PHY_ID, but not the PAT_NAME of PHY_NAME fields. The following query joins

the PATIENT, PHYSICIAN, and TREATS tables to produce the desired information.

The query also demonstrates the use of an ALIAS for a table name – here we have

three aliases (PA, PH, and TR), one for each table.

Example 12.2. List which patient was treated by which physician. Also list their ids along
with their names. (see table structures on the left)

Solution. SELECT DISTINCT PA.patient_no, pat_name, PH.phy_id, phy_name

FROM patient PA, physician PH, treats TR

WHERE PA.patient_no = TR.patient_no AND

PH.phy_id = TR.phy_id AND

PH.phy_id IN (8887, 8886, 8883, 8882) ;

12.5.4C Equi-Join and Natural Join

The Join, in which columns are compared for equality, is called

Equi-Join.

A non-equi-join is a query that specifies some relationship other than

equality between the columns.

The Join in which only one of the identical columns (coming from joined

tables) exists, is called Natural Join.

The Equi-Join and Natural Join are equivalent except that duplicate

columns are eliminated in the Natural Join that would otherwise appear

in the Equi-Join.

Example 12.3. Display patient_no, the date when he/she is discharged and the charge paid by
him/her.

Solution. SELECT billed.patient_no, date_discharged, charge

FROM billed, patient

WHERE patient.patient_no = billed.patient_no ;

The above query shows the PATIENT_NO and DATE_DISCHARGED from the
PATIENT table and the associated CHARGE from the BILLED table.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.25

Equi-Join The Join, in which

columns are compared for

equality, is called Equi-Join.

Natural Join

The Join in which only

one of the identical columns

(coming from joined tables)

exists, is called Natural Join.

C. Treats

Phy_Id

Patient_No

Procedure_No

Date_Treated

Treat_Result

D. Physicians

Phy_Id

Phy_Phone

Phy_Name

Table Structures

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

12.5.5 UNION

Multiple queries can be combined into one by forming a union of them. The SQL
UNION operator allows manipulation of results returned by two or more queries by
combining the results of each query into a single result set. Consider the data given below
that contains rows from relations A and B.

Relation A Relation B

Rollno. Name Age

101 Sidharth 19

102 Kushagra 18

103 Usman 18

The UNION of these two relations can be created as follows :

SELECT * FROM A

UNION

SELECT * FROM B ;

The result produced will be as follows :

Rollno. Name Age

101 Sidharth 19

102 Kushagra 18

103 Usman 18

301 Anubha 18

303 Sba 18

See the duplicate row (102 Kushagra 18) has automatically been removed. By default,
the UNION operator removes duplicate rows from the result. If the ALL option is used, all
rows, including duplicates, are included in the results. The general form of using UNION
operator is :

SELECT statement

UNION [ALL]

SELECT statement ;

Rules of Using UNION Operator

1. Both the SELECT statements must be UNION compatible, that is, the
select-lists (column-lists) of SELECT statement must have same number of
columns having similar data types and order. For instance, the following
union query is invalid :

SELECT ecode, ename FROM branch1

UNION

SELECT ename, ecode FROM branch2 ;

It is because the order of columns is different. Also, the following union is
invalid because the SELECT statements do not contain compatible select-lists.

SELECT ecode, ename, sex FROM branch1

UNION

SELECT ecode, ename, sex, grade FROM branch2 ;

2. The ORDER BY clause can occur only at the end of the UNION statement. It
can’t be used within the individual queries that make the UNION statement.

3. The GROUP BY and HAVING clauses are allowed only within individual
queries. These clauses cannot be used to affect the final result set.

12.26 Support Material

Rollno. Name Age

301 Anubha 17

102 Kushagra 18

303 Sba 18

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

12.5.6 Some More DDL Commands

AFTER discussing DML commands like SELECT, INSERT, DELETE and UPDATE,
let us now move on to discussion of some more DDL commands.

12.5.6A The ALTER TABLE Command

The ALTER TABLE command is not part of the ANSI standard, but it is widely
available, and its form is fairly consistent, although its capabilities vary considerably. It is
used to change the definitions of existing tables. Usually, it can add columns to a table.
Sometimes it can delete columns or change their sizes. Typically, the syntax to add a
column to a table is as follows :

ALTER TABLE �table name�

ADD <column name> <data type> <size> ;

The new column will be added with NULL values for all rows currently in the table.

It is generally possible to add several new columns, separated by commas, in a single

command. It may be possible to drop or alter columns through ALTER TABLE command

depending upon the SQL being supported by your dbms.

Most often, altering columns will simply be a matter of increasing their size. Because

of the non-standard nature of the ALTER TABLE command, you must refer to your

system documentation for exact details of ALTER TABLE command.

To modify existing columns of table, ALTER TABLE command can be used according
to following syntax :

ALTER TABLE <tablename>

MODIFY (columname newdatatype (newsize)) ;

For instance, to add a new column tel_number of type integer in table Emp you may give :

ALTER TABLE Emp

ADD (tel_number integer) ;

To modify column Job of table Emp to have new width of 30 characters, you may give :

ALTER TABLE Emp

MODIFY (Job char(30)) ;

12.5.6B The DROP TABLE Command

The DROP TABLE command of SQL lets you drop a table from the database. The SQL
requires you to empty a table before you eliminate from the database. But there is a
condition for dropping a table ; it must be an empty table.

To remove all the rows from your table, you use DELETE command
(as discussed in section 12.5.2E). For instance, if you want to drop items
table, you first remove all the rows using the command :

DELETE FROM items ;

Then you can drop the empty table items as follows :

DROP TABLE items ;

Once this command is given, the table name is no longer recognized and no more
commands can be given on that object.

When a table is dropped, any request to access its dependent view results into an
error because by default dependent entities such as foreign keys and views etc. are not

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.27

NOTE

A table with rows in it cannot be

dropped.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

dropped with table. For example, if the table employee is
dropped and then a request is made to select data from
view taxpayee which was dependent upon employee
table, it will result in an error.

If the dropped table is a base table for a view, then

the DBMS like Oracle invalidates these dependent views

but does not drop them. You cannot use these views

unless you re-create the table or drop and re-create the

objects so that they no longer depend on the table.

12.5.6C The DROP VIEW Command

To delete a view from the database the DROP
VIEW command is used. For example,

DROP VIEW taxpayee

drops the view taxpayee from the database. When a view
is dropped, it does not cause any change in its base table.
After the removal of view taxpayee, its base table
employee remains intact.

Let Us Rev i se

Ò SQL is a language that enables you to create and operate on relational databases.

Ò The various processing capabilities of SQL are :

data definition language (DDL), interactive and embedded data manipulation language (DML), view definition,

authorization, integrity and transaction control.

Ò The DDL provides statements for the creation and deletion of tables and indexes.

Ò The DML provides statements to enter, update, delete data and perform complex queries on these tables.

Ò The ANSI standard supports these data types : CHAR, DECIMAL (DEC), NUMERIC, INT(INTEGER), SMALLINT FLOAT,

REAL, DOUBLE PRECISION (DOUBLE).

Ò Most implementations also support DATE and TIME types.

Ò The CREATE TABLE command creates a new table.

Ò The SELECT command lets you make queries on the database. Rows returned are restricted using WHERE clause.

Ò Results are sorted using ORDER BY clause and the GROUP BY clause divides the result obtained into groups and the

HAVING clause sets condition for the GROUP BY clause.

Ò SQL aggregate functions (avg, min, max, sum, count) calculate the summary values from the data in a particular column.

Ò SELECT INTO creates a new table by extracting data from another table.

Ò The rows are added to relations using INSERT command.

Ò The rows are removed from a relation using DELETE command.

Ò The UPDATE command lets you change some or all of the values in an existing row.

Ò The CREATE VIEW creates view from a table.

Ò In unrestricted join or Cartesian product of two tables, all possible concate- nations are formed of all rows of both

the tables.

Ò The Join, in which columns are compared for equality, is called Equi-Join.

Ò The ALTER TABLE changes the definition of an existing table.

Ò The DROP TABLE drops a table from the database.

Ò The DROP VIEW drops a view from the database.

12.28 Support Material

? 1. What is the difference between SELECT

INTO and CREATE VIEW commands ?

2. What are views ? When can a view be

updated ?

3. What is the condition of dropping a

table ?

Note : For the following questions consider

tables EMPLOYEE, EMP, DEPT, PROJECT

and SALGRADE that have been mentioned

in Type B questions 5-7.

4. What happens if you try to drop a table

on which a view exists.

5. Create a view with one of the columns

Salary * 12. Try updating columns of

this view.

6. Can you create view of a view ?

7. Compare Join and Cartesian product.

8. What is the difference between a

Cartesian product and a Union ?

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Solved Problems

1 Why can you not ask to see the first seven rows of a table ?

Solution. Because the rows are, by definition, in no particular order.

2 Which subdivision of SQL is used to put values in tables and which one to create tables ?

Solution. Data Manipulation Language (DML) is used to put values in tables and Data Definition

Language (DDL) is used to create tables.

3 What are DDL and DML ? (Outside Delhi 2006)

Solution. The DDL provides statements for the creation and deletion of tables, indexes, views etc.

The DML provides statements to enter, update, delete data and perform complex queries on these tables.

4 Write a query that produces the salesman table with the columns in the following order : city,

salesman_name, salesman_code, commission.

Solution. SELECT city, salesman_name, salesman_code, commission

FROM salesman ;

5 Write a query that will produce the salesman-code values of all sales people with orders currently in the

Orders table without any rates.

Solution. SELECT DISTINCT salesman_code

FROM Orders ;

6 Write a query on the customers table whose output will exclude all customers with a rating �� 100, unless

they are located in Shimla.

Solution. SELECT *

FROM customers

WHERE rating �100

OR city � ‘Shimla’ ;

SELECT *

FROM customers

WHERE NOT rating �� 100

OR city � ‘Shimla’ ;

SELECT *

FROM customers

WHERE NOT (rating �� 100

AND city � � ‘Shimla’) ;

There may be other solutions as well.

7 Write a query that selects all orders except those with zeros or NULLs in the amt field.

Solution. SELECT * FROM Orders

WHERE amt � �0 AND (amt IS NOT NULL) ;

8 Write a query that counts the number of salespeople registering orders for each day. (If a salesperson has

more than one order on a given day, he or she should be counted only once.).

Solution. SELECT ord_date, count (DISTINCT salesman-code)

FROM orders

GROUP BY ord_date ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.29

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

9 Write a query on the customers table that will find the highest rating in each city. Put the output in this form :

For the city (city), the highest rating is : (rating).

Solution. SELECT ‘For the city’, city,’, the highest rating is’, MAX (rating)

FROM customers

GROUP BY city ;

10 Write a query that lists customers in descending order of rating. Output the rating field first, followed by

the customer’s name and number.

Solution. SELECT rating, cust_name, cust_num

FROM customers

ORDER BY rating DESC ;

11 Write a query that tables the orders for each day and places the results in descending order of the date.

Solution. SELECT ord_date, sum (amt)

FROM orders
GROUP BY ord_date
ORDER BY ord_date DESC ;

12 Write a command that puts the following values, in their given order, into the salesman table : city-Manali,

cust_name-Manisha, comm-NULL, cust-num-1901.

Solution. INSERT INTO salesman(city, cust_name, comm, cust_num)

VALUES (‘Manali’, ‘Manisha’, NULL, 1901) ;

13 Write a command that removes all orders from customer Sohan from Orders table.

Solution. DELETE FROM Orders

WHERE cust_name � ‘Sohan’ ;

14 Write a command that increases the ratings of all customers in Shimla by 100.

Solution. UPDATE Customers

SET rating � rating � 100

WHERE city � ‘Shimla’ ;

15 Observe the following PARTICIPANTS and EVENTS tables carefully and write the name of the RDBMS

operation which will be used to produce the output as shown in RESULT. Also, find the Degree and

Cardinality of the RESULT. (Outside Delhi 2016)

Table : PARTICIPANTS Table : EVENTS

PNO NAME

1 Aruanabha Tariban

2 John Fedricks

3 Kanti Desai

Table : RESULT

PNO NAME EVENTCODE EVENTNAME

1 Aruanabha Tariban 1001 IT Quiz

1 Aruanabha Tariban 1002 Group Debate

2 John Fedricks 1001 IT Quiz

2 John Fedricks 1002 Group Debate

3 Kanti Desai 1001 IT Quiz

3 Kanti Desai 1002 Group Debate

12.30 Support Material

EVENTCODE EVENTNAME

1001 IT Quiz

1002 Group Debate

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Solution. RDBMS Operation : Cartesian Product

Degree : 4

Cardinality : 6

16 Consider the following tables STORE and ITEM and answer (a) and (b) parts of this question.

(Delhi 2014)

Table : STORE Table : ITEM

SNo SName Area

S01 ABC Conputronics GK II

S02 All Infotech Media CP

S03 Tech Shoppe Nehru Place

S04 Geeks Tecno Soft Nehru Place

S05 Hitech Tech Store CP

(a) Write the SQL queries ((i) to (iv))

(i) To display IName and Price of all the Items in ascending order of their price.

(ii) To display SNo and SName of all Stores located in CP.

(iii) To display minimum and maximum price of each Iname from the table Item.

(iv) To display IName, Price of all items and their respective SName where they are available.

(b) Write the output of the following SQL commands ((i) to (iv)) :

(i) SELECT DISTINCT INAME FROM ITEM WHERE PRICE >= 5000 ;

(ii) SELECT AREA, COUNT (*) FROM STORE GROUP BY AREA ;

(iii) SELECT COUNT(DISTINCT AREA) FROM STORE ;

(iv) SELECT INAME, PRICE * 0.05 DISCOUNT FROM ITEM WHERE SNO IN (‘S02’, ‘S03’) ;

Solution. (a)

(i) SELECT IName, Price

FROM ITEM

ORDER BY Price ;

(ii) SELECT SNo, SName

FROM STORE

WHERE Area = "CP";

(iii) SELECT IName, Min(Price), Max(Price)

FROM ITEM

GROUP BY IName ;

(iv) SELECT IName, Price, SName

FROM ITEM, STORE

WHERE ITEM.SNO = STORE.SNO ;

(b) (i) Mother Board

Hard Disk

LCD

(ii) GK II 1

CP 2

Nehru Place 2

(iii) 3

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.31

INo Iname Price SNo

T01 Mother Board 12000 S01

T02 Hard Disk 5000 S01

T03 Keyboard 500 S02

T04 Mouse 300 S01

T05 Mother Board 13000 S02

T06 Key Board 400 S03

T07 LCD 6000 S04

T08 LCD 5500 S05

T09 Mouse 350 S05

T10 Hard Disk 4500 S03

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

(iv) INAME DISCOUNT

Keyboard 25

Mother Board 650

Keyboard 20

Hard Disk 225

17 Write SQL queries for (i) to (iv) and find outputs for SQL queries (v) to (viii), which are based on the tables.

(CBSE D 2016)

Table : VEHICLE

CODE VTYPE PERKM

101 VOLVO BUS 160

102 AC DELUXE BUS 150

103 ORDINARY BUS 90

105 SUV 40

104 CAR 20

Note.

� PERKM is Freight Charges per kilometre

� VTYPE is Vehicle Type

Table : TRAVEL

NO NAME TDATE KM CODE NOP

101 Janish Kin 2015-11-13 200 101 32

103 Vedika Sahai 2016-04-21 100 103 45

105 Tarun Ram 2016-03-23 350 102 42

102 John Fen 2016-02-13 90 102 40

107 Ahmed Khan 2015-01-10 75 104 2

104 Raveena 2016-05-28 80 105 4

106 Kripal Anaya 2016-02-06 200 101 25

Note.

� NO is Traveller Number

� KM is Kilometer travelled

� NOP is number of travellers travelled in vehicle

� TDATE is Travel Date

(i) To display NO, NAME TDATE from the table TRAVEL in descending order of NO.

(ii) To display the NAME of all the travellers from the table TRAVEL who are travelling by vehicle with code 101

or 102.

(iii) To display the NO and NAME of those travellers from the table TRAVEL who travelled between ‘2015-12-31’

and ‘2015-04-01’.

(iv) To display all the details from table TRAVEL for the travellers, who have travelled distance more than 100 KM

in ascending order of NOP.

(v) SELECT COUNT(*), CODE FROM TRAVEL

GROUP BY CODE HAVING COUNT(*)>1 ;

(vi) SELECT DISTINCT CODE FROM TRAVEL ;

12.32 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

(vii) SELECT A.CODE, NAME, VTYPE

FROM TRAVEL A, VEHICLE B

WHERE A.CODE = B.CODE AND KM < 90 ;

(viii) SELECT NAME, KM * PERKM

FROM TRAVEL A, VEHICLE B

WHERE A.CODE = B.CODE AND A.CODE = ‘105’ ;

Solution.

(i) SELECT NO, NAME, TDATE

FROM TRAVEL

ORDER BY NO DESC ;

(ii) SELECT NAME

FROM TRAVEL

WHERE CODE IN(101, 102) ;

(iii) SELECT NO, NAME

FROM TRAVEL

WHERE TDATE >= '2015-04-01' AND TDATE <= '2015-12-31' ;

(iv) SELECT *

FROM TRAVEL

WHERE KM > 100

ORDER BY NOP ;

(v) 2 101

2 102

(vi) 101

103

102

104

105

(vii) 104 Ahmed Khan CAR

105 Raveena SUV

(viii) Raveena 3200

18 Consider the following tables Stock and Dealers and answer (a1) and (a2) parts of this question :

(Outside Delhi 2010)

Table : Stock

ItemNo Item Dcode Qty UnitPrice StockDate

5005 Ball Pen 0.5 102 100 16 31-Mar-10

5003 Ball Pen 0.25 102 150 20 01-Jan-10

5002 Gel Pen Premium 101 125 14 14-Feb-10

5006 Gel Pen Classic 101 200 22 01-Jan-09

5001 Eraser Small 102 210 5 19-Mar-09

5004 Eraser Big 102 60 10 12-Dec-09

5009 Sharpener Classic 103 160 8 23-Jan-09

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.33

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Table : Dealers

Dcode Dname

101 Reliable Stationers

103 Classic Plastics

102 Clear Deals

(a1) Write SQL commands for the following statements :

(i) To display details of all Items in the Stock table in ascending order of StockDate.

(ii) To display ItemNo and Item name of those items from Stock table whose UnitPrice is more than Rupees 10.

(iii) To display the details of those items whose dealer code (Dcode) is 102 or Quantity in Stock (Qty) is

more than 100 from the table Stock..

(iv) To display Maximum UnitPrice of items for each dealer individually as per Dcode from the table Stock.

(a2) Give the output of the following SQL queries :

(i) SELECT COUNT(DISTINCT Dcode) FROM Stock ;

(ii) SELECT Qty*UnitPrice FROM Stock

WHERE ItemNo = 5006 ;

(iii) SELECT Item, Dname FROM Stock S, Dealers D

WHERE S.Dcode = D.Dcode AND ItemNo = 5004 ;

(iv) SELECT MIN(StockDate) FROM Stock ;

Solution. (a1)

(i) SELECT *

FROM Stock

ORDER BY StockDate ;

(iii) SELECT *

FROM Stock

WHERE Dcode = 102 OR Qty > 100 ;

(iv) SELECT Dcode, MAX (UnitPrice)

FROM Stock

GROUP BY Dcode ;

(a2) (i) 3 (ii) 4400 (iii) Eraser Big Clear Deals (iv) 01-Jan-09

19 Consider the following tables EMPLOYEE and SALGRADE and answer (A1) and (A2) parts of this

question : (Outside Delhi 2011)

Table : EMPLOYEE

ECODE NAME DESIG SGRADE DOJ DOB

101 Abdul Ahmad EXECUTIVE S03 23-Mar-2003 13-Jan-1980

102 Ravi Chander HEAD-IT S02 12-Feb-2010 22-Jul-1987

103 John Ken RECEPTIONIST S03 24-Jun-2009 24-Feb-1983

105 Nazar Ameen GM S02 11-Aug-2006 03-Mar-1984

108 Priyam Sen CEO S01 29-Dec-2004 19-Jan-1982

12.34 Support Material

(ii) SELECT ItemNo, Item

FROM Stock

WHERE UnitPrice > 10 ;

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Table : SALGRADE

SGRADE SALARY HRA

S01 56000 18000

S02 32000 12000

S03 24000 8000

(A1) Write SQL commands for the following statements :

(i) To display the details of all EMPLOYEEs in descending order of DOJ.

(ii) To display NAME and DESIG of those EMPLOYEEs, whose SALGRADE is either S02 or S03.

(iii) To display the content of all the EMPLOYEEs table, whose DOJ is in between ‘09-Feb-2006’ and

‘08-Aug-2009’.

(iv) To add a new row with the following : 19, ‘Harish Roy’, ‘HEAD-IT’, ‘S02’, ‘09-Sep-2007’, ‘21-Apr-1983’

(A2) Give the output of the following SQL queries :

(i) SELECT COUNT (SGRADE), SGRADE FROM EMPLOYEE GROUP BY SGRADE;

(ii) SELECT MIN(DOB), MAX(DOJ) FROM EMPLOYEE;

(iii) SELECT NAME, SALARY FROM EMPLOYEE E,

SALGRADE S WHERE E.SGRADE = S.SGRADE AND E.ECODE<103;

(iv) SELECT SGRADE, SALARY + HRA FROM SALGRADE WHERE SGRADE = ‘S02’;

Solution. (A1)

(i) SELECT * FROM EMPLOYEE ORDER BY DOJ DESC ;

(ii) SELECT NAME, DESIG FROM EMPLOYEE WHERE SALGRADE IN(‘S02’, S03’) ;

(iii) SELECT * FROM EMPLOYEE WHERE DOJ

BETWEEN ‘09-Feb-2006’ AND ‘08-Aug-2009’ ;

(iv) INSERT INTO EMPLOYEE

VALUES(19,‘Harish Roy’,‘HEAD-IT’,‘S02’,‘09-Sep-2007’,‘21-Apr-1983’) ;

(A2)

(i) COUNT SGRADE

2 S03

2 S02

1 S01

(ii) 13-Jan-1980 12-Feb-2010

(iii) NAME SALARY

Abdul Ahmad 24000

Ravi Chander 32000

(iv) SGRADE SALARY + HRA

S02 44000

20 Differentiate between Data Definition Language and Data Manipulation Language. (OD 2002)

Solution. The SQL DDL (Data Definition Language) provides commands for defining relation schemas,

deleting relations, creating indexes and modifying relation schemas.

The SQL DML (Data Manipulation Language) includes a query language to insert, delete and modify

tuples in the database.

DML is used to put values and manipulate them in tables and other database objects and DDL is used to

create tables and other databse objects.

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.35

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Solved Problems

1. Differentiate between SQL commands DROP TABLE and DROP VIEW. Define Second

Normal form. (CBSE Outside Delhi 2000)

Solution. DROP TABLE command removes a table from a database and DROP

VIEW command removes a view from the data base.

2. Given the following student relation : (CBSE Outside Delhi 1999)

relation Student

No. Name Age Department Dateofadm Fee Sex

1. Pankaj 24 Computer 10/01/97 120 M

2. Shalini 21 History 24/03/98 200 F

3. Sanjay 22 Hindi 12/12/96 300 M

4. Sudha 25 History 01/07/99 400 F

5. Rakesh 22 Hindi 05/09/97 250 M

6. Shakeel 30 History 27/06/98 300 M

7. Surya 34 Computer 25/02/97 210 M

8. Shikha 23 Hindi 31/07/97 200 F

Write SQL commands for (a) to (f) and write output for (g).

(a) To show all information about the students of History department

(b) To list the names of female students who are in Hindi department

(c) To list names of all students with their date of admission in ascending order.

(d) To display student’s Name, Fee, Age for male Students only.

(e) To count the number of student with Age � 23.

(f) To inset a new row in the STUDENT table with the following data :

9, “Zaheer’’, 36, “Computer’’, {12/03/97}, 230, “M’’

(g) Give the output of following SQL statements :

(i) Select COUNT (distinct department) from STUDENT ;

(ii) Select MAX (Age) from STUDENT where Sex � “F’’ ;

(iii) Select AVG (Fee) from STUDENT where Dateofadm � {01/01/98} ;

(iv) Select SUM (Fee) from STUDENT where Dateofadm � {01/01/98} ;

Solution.

(a) SELECT * FROM Student (b) SELECT Name FROM Student

WHERE Department � “History’’ ; WHERE sex � “F’’ and

Department � “Hindi’’ ;

(c) SELECT name FROM Student (d) SELECT Name, Fee, Age

ORDER BY Dateofadm ; FROM Student

WHERE sex � “M’’ ;

(e) SELECT COUNT (*) FROM Student

WHERE Age < 23 ;

(f) INSERT INTO Student

VALUES (9, “Zaheer’’, “Computer’’, “12/03/97”, 230, “M’’) ;

(g) (i) 3 (ii) 25 (iii) 216 (iv) 1080

12.36 Support Material

H
ig

h
e

r
O

rd
e

r

T
h

in
k
in

g
S

k
ill

s

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

3. Given the following tables for a database LIBRARY : (CBSE Delhi 2004)

Table : BOOKS

Book_Id Book_Name Author_Name Publishers Price Type Qty.

C0001 Fast Cook Lata Kapoor EPB 355 Cookery 5

F0001 The Tears William Hopkins First Publ. 650 Fiction 20

T0001 My First C++ Brian & Brooke EPB 350 Text 10

T0002 C++ Brainworks A.W. Rossaine TDH 350 Text 15

F0002 Thunderbolts Anna Roberts First Publ. 750 Fiction 50

Table : ISSUED

Book_Id Quantity_Issued

T0001 4

C0001 5

F0001 2

Write SQL queries for (a) to (f) :

(a) To show Book name, Author name and Price of books of First Publ. publishers.

(b) To list the names from books of Text type.

(c) To display the names and price from books in ascending order of their price.

(d) To increase the price of all books of EPB Publishers by 50.

(e) To display the Book_Id, Book_Name and Quantity_Issued for all books which have
been issued. (The query will require contents from both the tables.)

(f) To insert a new row in the table Issued having the following data : “F0003”, 1

(g) Give the output of the following queries based on the above tables :

(i) SELECT COUNT(*) FROM Books ;

(ii) SELECT MAX(Price) FROM Books WHERE Quantity >=15 ;

(iii) SELECT Book_Name, Author_Name FROM Books WHERE Publishers =
“EPB” ;

(iv) SELECT COUNT (DISTINCT Publishers) FROM Books WHERE Price >= 400 ;

Solution.

(a) SELECT Book_Name, Author_Name, Price (b) SELECT Book_Name

FROM Books FROM Books
WHERE Publishers = “First Publ.’’ ; WHERE Type = “Text’’ ;

(c) SELECT Book_Name, Price (d) UPDATE Books

FROM Books SET Price = Price � 50

ORDER BY Price ; WHERE Publishers = “EPB’’ ;

(e) SELECT Books.Book_Id, Book_Name, Quantity_Issued

FROM Books, Issued

WHERE Books.Book_Id = Issued.Book_Id ;

(f) INSERT INTO Issued

VALUES(“F0003’’, 1) ;

(g) (i) 5 (ii) 750 (iii) Fast Cook Lata Kapoor (iv) 1

My First C++ Brian & Brooke

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.37

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

4. Consider the following DEPT and WORKER tables. Write SQL queries for (i) to and

(iv) find outputs for SQL queries (v) to (viii) : (CBSE Delhi 2015)

Table : DEPT

DCODE DEPARTMENT CITY

D01 MEDIA DELHI

D02 MARKETING DELHI

D03 INFRASTRUCTURE MUMBAI

D05 FINANCE KOLKATA

D04 HUMAN RESOURCE MUMBAI

Table : WORKER

WNO NAME DOJ DOB GENDER DCODE

1001 George K 2013-09-02 1991-09-01 MALE D01

1002 Ryma Sen 2012-12-11 1990-12-15 FEMALE D03

1003 Mohitesh 2013-02-03 1987-09-04 MALE D05

1007 Anil Jha 2014-01-17 1984-10-19 MALE D04

1004 Manila Sahai 2012-12-09 1986-11-14 FEMALE D01

1005 R Sahay 2013-11-18 1987-03-31 MALE D02

1006 Jaya Priya 2014-06-09 1985-06-23 FEMALE D05

Note. DOJ refers to date of joining and DOB refers to date of birth of workers.

(i) To display Wno, Name, Gender from the table WORKER in descending order of Wno.

(ii) To display the Name of all the FEMALE workers from the table WORKER.

(iii) To display the Wno and Name of those workers from the table WORKER who are

born between ‘1987-01-01’ and ‘1991-12-01’.

(iv) To count and display MALE workers who have joined after ‘1986-01-01’.

(v) SELECT COUNT(*), DCODE FROM WORKER

GROUP BY DCODE HAVING COUNT(*) > 1 ;

(vi) SELECT DISTINCT DEPARTMENT FROM DEPT ;

(vii) SELECT NAME, DEPARTMENT, CITY FROM WORKER W, DEPT D WHERE

W.DCODE = D.DCODE AND WNO < 1003 ;

(viii) SELECT MAX(DOJ), MIN(DOB) FROM WORKER ;

Solution.

(i) SELECT WNO, NAME, Gender, (ii) SELECT NAME

FROM WORKER FROM WORKER

ORDER BY WNO Desc ; WHERE GENDER = 'FEMALE' ;

(iii) SELECT WNO, NAME

FROM WORKER

WHERE DOB BETWEEN '1987-01-01' AND '1991-12-01' ;

(iv) SELECT count(*)

FROM WORKER

WHERE GENDER = 'MALE' AND DOJ > '1986-01-01' ;

12.38 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

(v) COUNT(*) DCODE

2 D01

2 D05

(vi) DISTINCT DEPARTMENT

MEDIA

MARKETING

INFRASTRUCTURE

FINANCE

HUMAN RESOURCE

(vii) NAME DEPARTMENT CITY

George K MEDIA DELHI

Ryma Sen INFRASTRUCTURE MUMBAI

(viii) Max(DOJ) Min(DOB)

2014-06-09 1984-10-19

Unsolved Problems

1. Consider the following tables Employee and Salary. Write SQL commands for the statements

(i) to (iv) and give outputs for SQL queries (v) to (vii)

Table : Employee

Eid Name Depid Qualification Sec

1 Deepali Gupta 101 MCA F

2 Rajat Tyagi 101 BCA M

3 Hari Mohan 102 B.A. M

4 Harry 102 M.A. M

5 Sumit Mittal 103 B.Tech. M

6 Jyoti 101 M.Tech. F

Table : Salary

Eid Basic D.A. HRA Bonus

1 6000 2000 2300 200

2 2000 300 300 30

3 1000 300 300 40

4 1500 390 490 30

5 8000 900 900 80

6 10000 300 490 89

(i) To display the frequency of employees department wise.

(ii) To list the names of those employees only whose name starts with ‘H’

(iii) To add a new column in salary table. The column name is Total_Sal.

(iv) To store the corresponding values in the Total_Sal column.

(v) Select max(Basic) from Salary where Bonus > 40 ;

(vi) Select count(*) from Employee group by Sex ;

(vii) Select Distinct Depid from Employee ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.39

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

2. With reference to following relations PERSONAL and JOB answer the questions that follow :

Create following tables such that Empno and Sno are not null and unique, date of birth

is after ’12-Jan-1960’ , name is never blank, Area and Native place is valid, hobby, dept is

not empty, salary is between 4000 and 10000.

Table : Personal

Empno Name Dobirth Native-place Hobby

123 Amit 23-Jan-1965 Delhi Music

127 Manoj 12-dec-1976 Mumbai Writing

124 Abhai 11-aug-1975 Allahabad Music

125 Vinod 04-apr-1977 Delhi Sports

128 Abhay 10-mar-1974 Mumbai Gardening

129 Ramesh 28-oct-1981 Pune Sports

Table : Job

Sno Area App_date Salary Retd_date Dept

123 Agra 25-jan-2006 5000 25-jan-2026 Marketing

127 Mathura 22-dec-2006 6000 22-dec-2026 Finance

124 Agra 19-aug-2007 5500 19-aug-2027 Marketing

125 Delhi 14-apr-2004 8500 14-apr-2018 Sales

128 Pune 13-mar-2008 7500 13-mar-2028 Sales

1. Show empno, name and salary of those who have Sports as hobby.

2. Show name of the eldest employee.

3. Show number of employee area wise.

4. Show youngest employees from each Native place.

5. Show Sno, Name, Hobby and Salary in descending order of Salary.

6. Show the hobbies of those whose name pronounces as ‘Abhay’.

7. Show the appointment date and native place of those whose name starts with ‘A’ or
ends in ‘d’.

8. Show the salary expense with suitable column heading of those who shall retire after
20-jan-2006.

9. Show additional burden on the company in case salary of employees having hobby as
sports, is increased by 10%.

10. Show the hobby of which there are 2 or more employees.

11. Show how many employee shall retire today if maximum length of service is 20 years.

12. Show those employee name and date of birth who have served more than 17 years as

on date.

13. Show names of those who earn more than all of the employees of Sales dept.

14. Increase salary of the employees by 5 % of their present salary with hobby as Music or

they have completed atleast 3 years of service.

Write the output of :

1. Select distinct hobby from personal ;

2. Select avg(salary) from personal, job where Personal.Empno = Job.Sno and Area in
(‘Agra’,’Delhi’) ;

3. Select count(distinct Native_place) from personal.

4. Select name, max(salary) from personal, job where Personal.Empno = Job.Sno ;

12.40 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Write SQL statements for the following :

1. Add a new tuple in the table essentially with hobby as Music.

2. Insert a new column email in job table

3. Create a table with values of columns empno, name, and hobby.

4. Create a view of personal and job details of those who have served less than 15 years.

5. Erase the records of employee from job table whose hobby is not Sports.

6. Remove the table personal.

3. With reference to the table below, answer the questions that follow :

Table : Employees

Empid Firstname Lastname Address City

010 Ravi Kumar Raj nagar GZB

105 Harry Waltor Gandhi nagar GZB

152 Sam Tones 33 Elm St. Paris

215 Sarah Ackerman 440 U.S. 110 Upton

244 Manila Sengupta 24 Friends street New Delhi

300 Robert Samuel 9 Fifth Cross Washington

335 Ritu Tondon Shastri Nagar GZB

400 Rachel Lee 121 Harrison St. New York

441 Peter Thompson 11 Red Road Paris

Table : EmpSalary

Empid Salary Benefits Designation

010 75000 15000 Manager

105 65000 15000 Manager

152 80000 25000 Director

215 75000 12500 Manager

244 50000 12000 Clerk

300 45000 10000 Clerk

335 40000 10000 Clerk

400 32000 7500 Salesman

441 28000 7500 Salesman

Write the SQL commands for the following using above tables :

(i) To show firstname, lastname, address and city of all employees living in Pairs

(ii) To display the content of Employees table in descending order of Firstname.

(iii) To display the firstname, lastname and total salary of all managers from the tables
Employes and EmpSalary, where total salary is calculated as Salary + Benefits.

(iv) To display the maximum salary among managers and clerks from the table EmpSalary.

Give the Output of following SQL commands :

(i) Select firstname, Salary from Employees, Empsalary where Designation � ‘Salesman’
and Employees.Empid = Empsalary.Empid ;

(ii) Select count(distinct designation) from EmpSalary ;

(iii) Select designation, sum(salary) from EmpSalary group by designation having count(*) >2 ;

(iv) Select sum(Benefits) from EmpSalary where Designation � ’Clerk’ ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.41

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Assignments

Short Answer Questions

1. Consider the following tables STORE and SUPPLIERS and answer (a) and (b) parts of this question.

(Delhi 2010)

Table : STORE

ItemNo Item Scode Qty Rate LastBuy

2005 Sharpener Classic 23 60 8 31-Jun-09

2003 Ball Pen 0.25 22 50 25 01-Feb-10

2002 Gel Pen Premium 21 150 12 24-Feb-10

2006 Gel Pen Classic 21 250 20 11-Mar-09

2001 Eraser Small 22 220 6 19-Jan-09

2004 Eraser Big 22 110 8 02-Dec-09

2009 Ball Pen 0.5 21 180 18 03-Nov-09

Table : SUPPLIERS

Scode Sname

21 Premium Stationers

23 Soft Plastics

22 Tetra Supply

(a) Write SQL commands for the following statements :

(i) To display details of all the items in the Store table in ascending order of LastBuy.

(ii) To display ItemNo and Item name of those items from Store table whose Rate is more than 15 Rupees.

(iii) To display the details of those items whose Suppliers code (Scode) is 22 or Quantity in Store (Qty) is

more than 110 from the table Store.

(iv) To display Minimum Rate of items for each Supplier individually as per Scode from the table Store.

(b) Give the output of the following SQL queries :

(i) SELECT COUNT (DISTINCT Scode) FROM Store ;

(ii) SELECT Rate*Qty FROM Store WHERE ItemNo = 2004 ;

(iii) SELECT Item, Sname FROM Store S, Suppliers P WHERE S.Scode = P.Scode AND Item No = 2006 ;

(iv) SELECT MAX (LastBuy) FROM Store ;

12.42 Support Material

Glossa ry

Aggregate Functions Functions that return single values from groups of values. SUM, AVG, MAX, MIN,

COUNT are SQL aggregate functions.

Base Table A table that contains data not derived from that in any other table.

Join A combined table of multiple tables resulting from a condition applied on

common fields.

SQL Structured Query Language A language that creates and operates on relational

databases.

View Table whose contents are derived from other table with the use of a query.

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

2. Consider the following tables Item and Customer. Write SQL commands for the statement (i) to (iv) and give

outputs for SQL queries (v) to (viii) (Outside Delhi 2008)

Table : ITEM

i_ID ItemName Manufacturer Price

PC01 Personal Computer ABC 35000

LC05 Laptop ABC 55000

PC03 Personal Computer XYZ 32000

PC06 Personal Computer COMP 37000

LC03 Laptop PQR 57000

Table : CUSTOMER

C_ID CustomerName City I_ID

01 N Roy Delhi LC03

06 H Singh Mumbai PC03

12 R Pandey Delhi PC06

15 C Sharma Delhi LC03

16 K Agarwal Banglore PC01

(i) To display the details of those Customers whose City is Delhi

(ii) To display the details of Item whose Price is in the range of 35000 to 55000 (Both values included)

(iii) To display the CustomerName, City from table Customer, and ItemName and Price from table Item,
with their corresponding matching I_ID

(iv) To increase the Price of all Items by 1000 in the table Item

(v) SELECT DISTINCT City FROM Customer ;

(vi) SELECT ItemName, MAX(Price), Count(*) FROM Item GROUP BY ItemName;

(vii) SELECT CustomerName, Manufacturer FROM Item, Customer

WHERE Item.Item_Id = Customer.Item_Id ;

(viii) SELECT ItemName, Price * 100 FROM Item WHERE Manufacturer = ‘ABC’ ;

3. Consider the following tables. Write SQL commands for the statements (i) to (iv) and give outputs for SQL

queries (v) to (viii) (Delhi 2007)

TABLE : SENDER

SenderID SenderName SenderAddress SenderCity

ND01 R Jain 2, ABC Appts New Delhi

MU02 H Sinha 12, Newtown Mumbai

MU15 S Jha 27/A, Park Street Mumbai

ND50 T Prasad 122-K, SDA New Delhi

TABLE : RECIPIENT

RecID SenderID RecName RecAddress RecCity

KO05 ND01 R Bajpayee 5, Central Avenue Kolkata

ND08 MU02 S Mahajan 116, A Vihar New Delhi

MU19 ND01 H Singh 2A, Andheri East Mumbai

MU32 MU15 P K Swamy B5, C S Terminus Mumbai

ND48 ND50 S Tripathi 13, B1 D, Mayur Vihar New Dehli

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.43

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

(i) To display the names of all Senders from Mumbai

(ii) To display the RecID, SenderName, SenderAddress, RecName, RecAddress for every Recipient

(iii) To display Recipient details in ascending order of RecName

(iv) To display number of Recipients from each city

(v) SELECT DISTINCT SenderCity FROM Sender ;

(vi) SELECT A. SenderName, B.RecName FROM Sender A, Recipient B

WHERE A. SenderID = B.SenderID AND B.RecCity = `Mumbai’ ;

(vii) SELECT RecName, RecAddress FROM Recipient

WHERE RecCity NOT IN(`Mumbai’, `Kolkata’) ;

(viii) SELECT RecID, RecName FROM Recipient

WHERE SenderID = `MU02’ OR SenderID = `ND50’ ;

4. Consider the following tables WORKERS and PAYLEVEL and answer (A1) and (A2) parts of this question :

(Delhi 2011)

Table : WORKER

ECODE NAME DESIG PLEVEL DOJ DOB

11 Radhe Shyam Supervisor P001 13-Sep-2004 23-Aug-1981

12 Chander Nath Operator P003 22-Feb-2010 12-Jul-1987

13 Fizza Operator P003 14-Jun-2009 14-Oct-1983

15 Ameen Ahmed Mechanic P002 21-Aug-2006 13-Mar-1984

18 Sanya Clerk P002 19-Dec-2005 09-Jun-1983

Table : PAYLEVEL

PLEVEL PAY ALLOWANCE

P001 26000 12000

P002 22000 10000

P003 12000 6000

(A1) Write SQL commands for the following statements :

(i) To display the details of all WORKERs in descending order of DOB.

(ii) To display NAME and DESIG of those WORKERs, whose PLEVEL is either P001 or P002.

(iii) To display the content of all the WORKERs table, whose DOB is in between ‘19-JAN-1984’ and

‘18-JAN-1987’.

(iv) To add a new row with the following :

19, ‘Daya Kishore’, ‘Operator’, ‘P003’, ‘19-Jun-2008’, ‘11-Jul-1984’

(A2) Give the output of the following SQL queries :

(i) SELECT COUNT (PLEVEL), PLEVEL FROM WORKER GROUP BY PLEVEL;

(ii) SELECT MAX(DOB), MIN(DOJ) FROM WORKER;

(iii) SELECT Name, Pay FROM WORKER W, PAYLEVEL P

HERE W.PLEVEL � P.PLEVEL AND W.ECODE < 13;

(iv) SELECT PLEVEL, PAY � ALLOWANCE FROM PAYLEVEL WHERE PLEVEL = ‘P003’;

5. Write SQL statement to create EMPLOYEE relation which contain EmpNo, Name, Skill, PayRate.

12.44 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

6. Create a table with the undermentioned structures

Table : EMP Table : PROJECT Table : DEPT

EmpNo NUMBER(4)

DeptNo NUMBER(2)

EmpName CHAR(10)

Job CHAR(10)

Manager NUMBER(4)

Hiredate DATE

Salary NUMBER(7, 2)

Commission NUMBER(7, 2))

7. Create a table called SALGRADE with the columns specified below :

LowSal NUMBER(7,2)

HighSal NUMBER(7,2)

Grade NUMBER(2)

where LowSal is the lowest salary limit in the Grade and HighSal is the highest salary limit in the grade.

8. Write SQL queries for (a) to (f) and write the outputs for the SQL queries mentioned shown in (g1) to (g4)

parts on the basis of tables PRODUCTS and SUPPLIERS (Outside Delhi 2013)

Table : PRODUCTS

Pin Pname Qty Price Company Supcode

101 Digital camera 14X 120 12000 Renix S01

102 Digital pad 11i 100 22000 Digi pop S02

104 Pen drive 16 GB 500 1100 Storeking S01

106 Led screen 32 70 28000 Dispexperts S02

105 Car GPS system 60 12000 Moveon S03

Table : SUPPLIERS

Supcode Sname City

S01 Get all inc Kolkata

S03 Easy market corp Delhi

S02 Digi busy group Chennai

(a) To display the details of all the products in ascending order of product names (i.e., Pname).

(b) To display product name and price of all those products, whose price is in the range of 10000 and 15000

(both values inclusive).

(c) To display the number of products, which are supplied by each supplier i.e., the expected output should

be :

S01 2

S02 2

S03 1

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.45

ProjId NUMBER(4)

ProjDesig CHAR(20)

ProjStartDT DATE

ProjEndDT DATE

BudgetAmount NUMBER(7)

MaxNoStaff NUMBER (2)

DeptNo NUMBER(2)

DeptName CHAR(12)

Location CHAR(12)

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

(d) To display the price, product name and quantity (i.e., qty) of those products which have quantity more

than 100.

(e) To display the names of those suppliers, who are either from DELHI or from CHENNAI.

(f) To display the name of the companies and the name of the products in descending order of company

names.

(g) Obtain the outputs of the following SQL queries based on the data given in tables PRODUCTS and

SUPPLIERS above.

(g1) SELECT DISTINCT SUPCODE FROM PRODUCTS ;

(g2) SELECT MAX (PRICE), MIN (PRICE) FROM PRODUCTS ;

(g3) SELECT PRICE*QTY AMOUNT

FROM PROUDCTS WHERE PID = 104 ;

(g4) SELECT PNAME, SNAME

FROM PRODUCTS P, SUPPLIERS S

WHERE P.SUPCODE = S.SUPCODE AND QTY > 100 ;

9. Consider the following tables CABHUB and CUSTOMER and answer (a) and (b) parts of this question :

(Delhi 2012)

Table : CABHUB

Vcode VehicleName Make Color Capacity Charges

100 Innova Toyota WHITE 7 15

102 SX4 Suzuki BLUE 4 14

104 C Class Mercedes RED 4 35

105 A-Star Suzuki WHITE 3 14

108 Indigo Tata SILVER 3 12

Table : CUSTOMER

CCode CName Vcode

1 Hemant Sahu 101

2 Raj Lal 108

3 Feroza Shah 105

4 Ketan Dhal 104

(a) Write SQL commands for the following statements :

(i) To display the names of all the white colored vehicles.

(ii) To display name of vehicle, make and capacity of vehicles in ascending order of their seating

capacity.

(iii) To display the highest charges at which a vehicle can be hired from CABHUB.

(iv) To display the customer name and the corresponding name of the vehicle hired by them.

(b) Give the output of the following SQL queries :

(i) SELECT COUNT (DISTINCT Make) FROM CABHUB ;

(ii) SELECT MAX(Charges), MIN(Charges) FROM CABHUB ;

(iii) SELECT COUNT(*), Make FROM CABHUB ;

(iv) SELECT Vehicle FROM CABHUB WHERE Capacity = 4 ;

12.46 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

10. Differentiate between SQL commands DROP TABLE and DROP VIEW. (Outside Delhi 2000)

11. Study the following tables DOCTOR and SALARY and write SQL commands for the questions (i) to (iv) and

give outputs for SQL queries (v) to (vi) : (Delhi 2006)

Table : DOCTOR

ID NAME DEPT SEX EXPERIENCE

101 John ENT M 12

104 Smith ORTHOPEDIC M 5

107 George CARDIOLOGY M 10

114 Lara SKIN F 3

109 K George MEDICINE F 9

105 Johnson ORTHOPEDIC M 10

117 Lucy ENT F 3

111 Bill MEDICINE F 12

130 Morphy ORTHOPEDIC M 15

Table : SALARY

ID BASIC ALLOWANCE CONSULTATION

101 12000 1000 300

104 23000 2300 500

107 32000 4000 500

114 12000 5200 100

109 42000 1700 200

105 18900 1690 300

130 21700 2600 300

(i) Display NAME of all doctors who are in “MEDICINE’’ having more than 10 years experience from the

table DOCTOR.

(ii) Display the average salary of all doctors working in “ENT’’ department using the tables DOCTOR and

SALARY. Salary = BASIC + ALLOWANCE.

(iii) Display the minimum ALLOWANCE of female doctors.

(iv) Display the highest consultation fee among all male doctors.

(v) SELECT count (*) from DOCTOR where SEX � “F’’

(vi) SELECT NAME, DEPT, BASIC from DOCTOR, SALARY

WHERE DEPT � “ENT’’ AND DOCTOR.ID � SALARY.ID

12. (a) What are DDL and DML commands ?

(b) Study the following tables FLIGHTS and FARES and write SQL commands for the questions (i) to (iv)

and give outputs for SQL queries (v) to (vi). (Outside Delhi 2006)

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.47

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Table : FLIGHTS

FL_NO STARTING ENDING NO_FLIGHTS NO_STOPS

IC301 MUMBAI DELHI 8 0

IC799 BANGALORE DELHI 2 1

MC101 INDORE MUMBAI 3 0

IC302 DELHI MUMBAI 8 0

AM812 KANPUR BANGALORE 3 1

IC899 MUMBAI KOCHI 1 4

AM501 DELHI TRIVANDRUM 1 5

MU499 MUMBAI MADRAS 3 3

IC701 DELHI AHMEDABAD 4 0

Table : FARES

FL_NO AIRLINES FARE TAX%

IC701 Indian Airlines 6500 10

MU499 Sahara 9400 5

AM501 Jet Airways 13450 8

IC899 India Airlines 8300 4

IC302 Indian Airlines 4300 10

IC799 Indian Airlines 10500 10

MC101 Deccan Airlines 3500 4

(i) Display FL_NO and NO_FLIGHTS from “KANPUR’’ to “BANGALORE’’ from the table FLIGHTS.

(ii) Arrange the contents of the table FLIGHTS in the ascending order of FL_NO.

(iii) Display the FL_NO and fare to be paid for the flights from DELHI to MUMBAI using the tables

FLIGHTS and FARES, where the fare to be paid = FARE + FARE*TAX%/100.

(iv) Display the minimum fare “Indian Airlines’’ is offering from the table FARES.

(v) SELECT FL_NO, NO_FLIGHTS, AIRLINES from FLIGHTS, FARES

WHERE STARTING = “DELHI’’ AND FLIGHTS.FL_NO = FARES.FL_NO.

(vi) SELECT count(distinct ENDING) from FLIGHTS.

13. Consider the following tables EMPLOYEES and EMPSALARY. Write SQL commands for the statements (i) to (iv) and

give outputs for SQL queries (v) to (viii). (Delhi 2005)

Table : Employees

EMPID FIRSTNAME LASTNAME ADDRESS CITY

010 George Smith 83 First Street Howard

105 Mary Jones 842 Vine Ave. Losantiville

12.48 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

EMPID FIRSTNAME LASTNAME ADDRESS CITY

152 Sam Tones 33 Elm St. Paris

215 Sarah Ackerman 440 U.S. 110 Upton

244 Manila Sengupta 24 Friends Street New Delhi

300 Robert Samuel 9 Fifth Cross Washington

335 Henry Williams 12 Moore Street Boston

400 Rachel Lee 121 Harrison St. New York

441 Peter Thompson 11 Red Road Paris

Table : Empsalary

EMPID SALARY BENEFITS DESIGNATION

010 75000 15000 Manager

105 65000 15000 Manager

152 80000 25000 Director

215 75000 12500 Manager

244 50000 12000 Clerk

300 45000 10000 Clerk

335 40000 10000 Clerk

400 32000 7500 Salesman

441 28000 7500 Salesman

(i) To display Firstname, Lastname, Address and City of all employees living in Paris from the table

Employees.

(ii) To display the content of Employees table in descending order of FIRSTNAME.

(iii) To display the Firstname, Lastname, and Total Salary of all Managers from the tables Employees

and Empsalary, where Total Salary is calculated as Salary + Benefits.

(iv) To display the Maximum salary among Managers and Clerks from the table Empsalary.

(v) SELECT Firstname, Salary

FROM Employees, Empsalary

WHERE DESIGNATI ON = ‘Salesman’ AND

EMPLOYEES.EMPID = Empsalary.EMPID ;

(vi) SELECT COUNT(DISTINCT DESIGNATION) FROM Empsalary ;

(vii) SELECT DESIGNATION, SUM(SALARY)

FROM Empsalary

GROUP BY DESIGNATION HAVING COUNT (*) > 2 ;

(viii) SELECT SUM(BENEFITS)

FROM Employees

WHERE DESIGNATION = ‘Clerk’ ;

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.49

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

14. Consider the following tables GARMENT and FABRIC. Write SQL commands for the statements (i) to (iv)

and give outputs for SQL queries (v) to (viii). (Delhi 2009)

Table : GARMENT

GCODE Description Price FCODE READYDATE

10023 PENCIL SKIRT 1150 F03 19-DEC-08

10001 FORMAL SHIRT 1250 F01 12-JAN-08

10012 INFORMAL SHIRT 1550 F02 06-JUN-08

10024 BABY TOP 750 F03 07-APR-07

10090 TULIP SKIRT 850 F02 31-MAR-07

10019 EVENING GOWN 850 F03 06-JUN-08

10009 INFORMAL PANT 1500 F02 20-OCT-08

10007 FORMAL PANT 1350 F01 09-MAR-08

10020 FROCK 850 F04 09-SEP-07

10089 SLACKS 750 F03 31-OCT-08

Table : FABRIC

FCODE TYPE

F04 POLYSTER

F02 COTTON

F03 SILK

F01 TERELENE

(i) To display GCODE and DESCRIPTION of each GARMENT in descending order of GCODE.

(ii) To display the details of all the GARMENTs, which have READYDATE in between 08-DEC-07 and

16-JUN-08 (inclusive of both the dates).

(iii) To display the average PRICE of all the GARMENTs, which are made up of FABRIC with FCODE as

F03.

(iv) To display FABRIC wise highest and lowest price of GARMENTs from GARMENT table. (Display

FCODE of each GARMENT along with highest and lowest price).

(v) SELECT SUM (PRICE) FROM GARMENT WHERE FCODE = ‘F01’ ;

(vi) SELECT DESCRIPTION, TYPE FROM GARMENT, FABRIC WHERE GARMENT.FCODE =

FABRIC.FCODE AND GARMENT.PRICE >= 1260 ;

(vii) SELECT MAX (FCODE) FROM FABRIC ;

(viii) SELECT COUNT (DISTINCT PRICE) FROM GARMENT ;

15. Consider the following tables DRESS and Material. Write SQL commands for the statements (i) to (iv) and

give outputs for SQL queries (v) to (viii). (Outside Delhi 2009)

Table : DRESS

DCODE DESCRIPTION PRICE MCODE LAUNCHDATE

10001 FORMAL SHIRT 1250 M001 12-JAN-08

10020 FROCK 750 M004 09-SEP-07

12.50 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

DCODE DESCRIPTION PRICE MCODE LAUNCHDATE

10012 INFORMAL SHIRT 1450 M002 06-JUN-08

10019 EVENING GOWN 850 M003 06-JUN-08

10090 TULIP SKIRT 850 M002 31-MAR-07

10023 PENCIL SKIRT 1250 M003 19-DEC-08

10089 SLACKS 850 M003 20-OCT-08

10007 FORMAL PANT 1450 M001 09-MAR-08

10009 INFORMAL PANT 1400 M002 20-OCT-08

10024 BABY TOP 650 M003 07-APR-07

Table : MATERIAL

MCODE TYPE

M001 TERELENE

M002 COTTON

M004 POLYESTER

M003 SILK

(i) To display DCODE and DESCRIPTION of each dress in ascending order of DCODE.

(ii) To display the details of all the dresses which have LAUNCHDATE in between 05-DEC-07 and

20-JUN-08 (inclusive of both the dates).

(iii) To display the average PRICE of all the dresses which are made up of material with MCODE as M003.

(iv) To display materialwise highest and lowest price of dresses from DRESS table. (Display MCODE of each

dress along with highest and lowest price)

(v) SELECT SUM (PRICE) FROM DRESS WHERE

MCODE = ‘M001’ ;

(vi) SELECT DESCRIPTION, TYPE FROM DRESS,

MATERIAL WHERE DRESS.MCODE =

MATERIAL.MCODE AND DRESS.PRICE >= 1250 ;

(vii) SELECT MAX(MCODE) FROM MATERIAL ;

(viii) SELECT COUNT(DISTINCT PRICE) FROM DRESS ;

16. Consider the following tables Stationery and Consumer. Write SQL commands for the statement (i) to (iv) and

give outputs for SQL queries (v) to (viii) (Delhi 2008C)

Table : STATIONERY

S_ID StationeryName Company Price

DP01 Dot Pen ABC 10

PL02 Pencil XYZ 6

ER05 Eraser XYZ 7

PL01 Pencil CAM 5

GP02 Gel Pen ABC 15

UNIT 2-2 : Data Management

STRUCTURED QUERY LANGUAGE
12.51

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

Table : CONSUMER

C_ID ConsumerName Address S_ID

01 Good Learner Delhi PL01

06 Write Well Mumbai GP02

12 Topper Delhi DP01

15 Write & Draw Delhi PL02

16 Motivation Banglore PL01

(i) To display the details of those Consumers whose Address is Delhi

(ii) To display the details of Stationery whose Price is in the range of 8 to 15 (Both values included)

(iii) To display the ConsumerName, Address from Table Consumer, and Company and Price from table

Stationery, with their corresponding matching S_ID

(iv) To increase the Price of all Stationery by 2

(v) SELECT DISTINCT Address FROM Consumer ;

(vi) SELECT Company, MAX(Price), Min(Price), Count(*)

FROM Stationery GROUP BY Company ;

(vii) SELECT Consumer.ConsumerName, Stationery.StationeryName,

Stationery.Price FROM Stationery, Consumer

WHERE Consumer.S_Id = Stationery.S_Id

(viii) SELECT StationeryName, Price * 3

FROM Stationery

12.52 Support Material

D
H
A
N
P
A
T
 R

A
I
&
 C

O
.

